Ground motion estimation equations 1964–2003
Reissue of ESEE Report No. 01-1: ‘A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000)’ with corrections and additions

John Douglas

Research report number: 04-001-SM
9 January 2004
Copyright Notice

Imperial College of Science, Technology and Medicine
Department of Civil & Environmental Engineering

Research report number: 04-001-SM
Ground motion estimation equations 1964–2003
Reissue of ESEE Report No. 01-1: ‘A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000)’ with corrections and additions

© 2004 John Douglas
john.douglas@imperial.ac.uk

This publication may be distributed freely in its entirety and in its original form without the consent of the copyright owner.

Use of this material in any other published works must be appropriately referenced, and, if necessary, permission sought from the copyright owner.

Published by: Dr John Douglas
Department of Civil & Environmental Engineering
Imperial College London
South Kensington Campus,
London, SW7 2AZ,
United Kingdom

9 January 2004

www.imperial.ac.uk/
CONTENTS

1. Preface .......................................................... 14

2. Introduction .................................................... 15

3. Summary of published attenuation relations for peak ground acceleration ............... 17
   3.1 Esteva & Rosenblueth (1964) ................................ 17
   3.2 Kanai (1966) ................................................... 17
   3.3 Milne & Davenport (1969) .................................... 17
   3.4 Esteva (1970) ................................................... 17
   3.5 Denham & Small (1971) ....................................... 18
   3.6 Donovan (1973) .................................................. 18
   3.7 Denham et al. (1973) ............................................ 18
   3.8 Esteva & Villaverde (1973) & Esteva (1974) ............... 19
   3.9 Orphal & Lahoud (1974) ........................................ 19
   3.10 Ambraseys (1975b), Ambraseys (1975a) & Ambraseys (1978a) ....................... 19
   3.11 Trifunac & Brady (1975), Trifunac (1976) & Trifunac & Brady (1976) ............ 19
   3.12 Blume (1977) .................................................... 21
   3.13 McGuire (1977) ............................................... 21
   3.14 Milne (1977) ...................................................... 22
   3.15 Ambraseys (1978b) ............................................. 22
   3.16 Donovan & Bornstein (1978) ................................ 23
   3.17 Faccioli (1978) .................................................. 23
   3.18 McGuire (1978) .................................................. 24
<table>
<thead>
<tr>
<th>Reference</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.20 Cornell <em>et al.</em> (1979)</td>
<td>25</td>
</tr>
<tr>
<td>3.21 Aptikaev &amp; Kopnichev (1980)</td>
<td>25</td>
</tr>
<tr>
<td>3.22 Blume (1980)</td>
<td>26</td>
</tr>
<tr>
<td>3.23 Iwasaki <em>et al.</em> (1980)</td>
<td>26</td>
</tr>
<tr>
<td>3.24 Ohsaki <em>et al.</em> (1980a)</td>
<td>27</td>
</tr>
<tr>
<td>3.25 Campbell (1981)</td>
<td>27</td>
</tr>
<tr>
<td>3.26 Chiaruttini &amp; Siro (1981)</td>
<td>30</td>
</tr>
<tr>
<td>3.27 Joyner &amp; Boore (1981)</td>
<td>31</td>
</tr>
<tr>
<td>3.28 Bolt &amp; Abrahamson (1982)</td>
<td>32</td>
</tr>
<tr>
<td>3.29 PML (1982)</td>
<td>33</td>
</tr>
<tr>
<td>3.30 Schenk (1982)</td>
<td>33</td>
</tr>
<tr>
<td>3.31 Brillinger &amp; Preisler (1984)</td>
<td>33</td>
</tr>
<tr>
<td>3.34 McCann Jr. &amp; Echezwia (1984)</td>
<td>36</td>
</tr>
<tr>
<td>3.35 Schenk (1984)</td>
<td>36</td>
</tr>
<tr>
<td>3.36 Xu <em>et al.</em> (1984)</td>
<td>37</td>
</tr>
<tr>
<td>3.37 Brillinger &amp; Preisler (1985)</td>
<td>37</td>
</tr>
<tr>
<td>3.38 Kawashima <em>et al.</em> (1985)</td>
<td>38</td>
</tr>
<tr>
<td>3.39 Peng <em>et al.</em> (1985b)</td>
<td>38</td>
</tr>
<tr>
<td>3.40 Peng <em>et al.</em> (1985a)</td>
<td>39</td>
</tr>
<tr>
<td>3.41 PML (1985)</td>
<td>39</td>
</tr>
<tr>
<td>3.42 McCue (1986)</td>
<td>40</td>
</tr>
<tr>
<td>3.45 Sabetta &amp; Pugliese (1987)</td>
<td>41</td>
</tr>
</tbody>
</table>
3.47 Singh et al. (1987) .................................................. 44
3.48 Algermissen et al. (1988) ................................. 44
3.49 Annaka & Nozawa (1988) ............................... 44
3.51 Fukushima et al. (1988) & Fukushima & Tanaka (1990) .................................................. 46
3.52 Gaull (1988) ........................................................... 47
3.53 Joyner & Boore (1988) ........................................... 48
3.54 McCue et al. (1988) ................................................ 48
3.56 Tong & Katayama (1988) ......................................... 49
3.57 Yamabe & Kanai (1988) .......................................... 50
3.58 Youngs et al. (1988) ................................................ 50
3.59 Abrahamson & Litehiser (1989) .......................... 52
3.60 Campbell (1989) .................................................... 53
3.61 Alfaro et al. (1990) .................................................. 54
3.62 Ambraseys (1990) .................................................. 54
3.63 Campbell (1990) .................................................... 55
3.64 Dahle et al. (1990b) & Dahle et al. (1990a) ............... 55
3.65 Jacob et al. (1990) .................................................. 56
3.66 Sen (1990) ............................................................ 57
3.67 Sigbjörnsson (1990) ................................................. 57
3.68 Tsai et al. (1990) ..................................................... 57
3.70 Crouse (1991) .......................................................... 59
3.72 Huo & Hu (1991) ...................................................... 60
3.73 I.M. Idriss (1991) reported in Idriss (1993) .................... 62
3.74 Niazi & Bozorgnia (1991) ....................................... 62
3.75 Rogers et al. (1991) .................................................. 63
3.76 Abrahamson & Youngs (1992) ................................. 65
3.77 Ambraseys et al. (1992) ........................................... 65
3.79 Sigbjörnsson & Baldvinsson (1992) ............................. 67
3.80 Taylor Castillo et al. (1992) ........................................ 67
3.81 Tento et al. (1992) .................................................... 67
3.82 Theodulidis & Papazchos (1992) ................................. 68
3.83 Boore et al. (1993) & Boore et al. (1997) ....................... 69
3.84 Campbell (1993) ...................................................... 70
3.85 McVerry et al. (1993) & McVerry et al. (1995) ............... 70
3.86 Sadigh et al. (1993) & Sadigh et al. (1997) ..................... 71
3.87 Singh et al. (1993) .................................................... 72
3.88 Sun & Peng (1993) .................................................... 73
3.89 Ambraseys & Srbulov (1994) ...................................... 73
3.90 Boore et al. (1994a) & Boore et al. (1997) ..................... 74
3.91 Fukushima et al. (1994) & Fukushima et al. (1995) ......... 75
3.92 Lawson & Krawinkler (1994) ...................................... 76
3.93 Lungu et al. (1994) .................................................... 76
3.94 Musson et al. (1994) .................................................. 77
3.95 Radu et al. (1994), Lungu et al. (1995a) & Lungu et al. (1996) .......................... 77
3.96 Ramazi & Schenk (1994) ............................................. 78
3.97 Xiang & Gao (1994) ................................................... 79
3.98 Ambraseys (1995) ..................................................... 79
3.99 Dahle et al. (1995) ..................................................... 81
3.100 Lee et al. (1995) ....................................................... 82
3.101 Lungu et al. (1995b) .................................................. 84
3.102 Molas & Yamazaki (1995) .......................................... 84
3.103 Sarma & Free (1995) .................................................. 85
3.106 Aydan et al. (1996) .................................................. 87
3.107 Bommer et al. (1996) ................................................. 87
3.110 Ohno et al. (1996) ..................................................... 91
3.111 Romeo et al. (1996) .................................................. 91
3.112 Sarma & Srbulov (1996) .............................................. 92
3.113 Singh et al. (1996) .................................................... 92
3.114 Spudich et al. (1996) & Spudich et al. (1997) ............... 92
3.115 Stamatovska & Petrovski (1996) .................................. 93
3.117 Munson & Thurber (1997) ......................................... 96
3.118 Rhoades (1997) ....................................................... 96
3.119 Schmidt et al. (1997) ................................................. 97
3.120 Youngs et al. (1997) ................................................ 98
3.121 Zhao et al. (1997) ................................................... 99
3.122 Bouhadad et al. (1998) ............................................. 100
3.123 Costa et al. (1998) .................................................. 100
3.124 Manic (1998) ......................................................... 100
3.125 Rinaldis et al. (1998) ............................................... 101
3.126 Sadigh & Egan (1998) .............................................. 102
3.128 Sharma (1998) ...................................................... 103
3.129 Smit (1998) .......................................................... 104
3.130 Cabañas et al. (1999), Cabañas et al. (2000) & Benito et al. (2000) .......................... 105
3.131 Chapman (1999) .................................................. 106
3.132 Cousins et al. (1999) ............................................ 106
3.133 Ólafsson & Sigbjörnsson (1999) ............................. 107
3.134 Spudich et al. (1999) ............................................ 108
3.135 Wang et al. (1999) ............................................... 109
3.136 Zaré et al. (1999) .................................................. 110
3.138 Bozorgnia et al. (2000) ......................................... 112
3.139 Campbell & Bozorgnia (2000) ............................... 113
3.140 Jain et al. (2000) .................................................. 114
3.141 Kobayashi et al. (2000) .......................................... 115
3.142 Monguilner et al. (2000a) ....................................... 116
3.143 Sharma (2000) ..................................................... 117
3.144 Si & Midorikawa (2000) ........................................ 118
3.145 Smit et al. (2000) .................................................. 119
3.146 Takahashi et al. (2000) .......................................... 119
3.147 Wang & Tao (2000) .............................................. 120
3.148 Chang et al. (2001) .............................................. 120
3.149 Lussou et al. (2001) ............................................. 122
3.150 Chen & Tsai (2002) .............................................. 122
3.151 Gregor et al. (2002) ............................................. 123
3.152 Gülkân & Kalkan (2002) ....................................... 124
3.153 Khademi (2002) ................................................... 125
3.154 Margaris et al. (2002a) & Margaris et al. (2002b) .... 126
3.155 Schwarz et al. (2002) ........................................... 127
3.156 Stamatovska (2002) ............................................. 128
3.157 Tromans & Bommer (2002) .................................... 128
3.158 Zonno & Montaldo (2002) .................................... 129
3.159 Alarcón (2003) .................................................. 130
3.160 Alchalbi et al. (2003) ............................................. 131
3.162 Boatwright et al. (2003) ...................................... 135
3.163 Bommer et al. (2003) .......................................... 136

4. General characteristics of attenuation relations for peak ground acceleration .................. 142

5. Summary of published attenuation relations for spectral ordinates .............................. 159
5.1 Johnson (1973) ...................................................... 159
5.2 Kobayashi & Nagahashi (1977) ................................ 159
5.3 McGuire (1977) ...................................................... 159
5.4 Trifunac (1977) & Trifunac & Anderson (1978a) ........ 160
5.5 Faccioli (1978) ....................................................... 162
5.6 McGuire (1978) ....................................................... 162
5.7 Trifunac (1978) & Trifunac & Anderson (1978b) ........ 162
5.8 Trifunac & Anderson (1978c) .................................. 163
5.9 Cornell et al. (1979) ................................................. 164
5.10 Trifunac & Lee (1979) ............................................. 164
5.11 Ohsaki et al. (1980b) ............................................ 165
5.12 Ohsaki et al. (1980a) ............................................. 165
5.13 Trifunac (1980) ..................................................... 165
5.14 Devillers & Mohammadioun (1981) ......................... 166
5.15 Kobayashi & Midorikawa (1982) ............................. 167
5.17 Kawashima et al. (1984) ...................................... 167
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.18</td>
<td>Kawashima et al. (1985)</td>
<td>167</td>
</tr>
<tr>
<td>5.19</td>
<td>Trifunac &amp; Lee (1985)</td>
<td>168</td>
</tr>
<tr>
<td>5.20</td>
<td>Kamiyama &amp; Yanagisawa (1986)</td>
<td>169</td>
</tr>
<tr>
<td>5.24</td>
<td>Annaka &amp; Nozawa (1988)</td>
<td>170</td>
</tr>
<tr>
<td>5.25</td>
<td>Crouse et al. (1988)</td>
<td>170</td>
</tr>
<tr>
<td>5.26</td>
<td>Petrovski &amp; Marcellini (1988)</td>
<td>171</td>
</tr>
<tr>
<td>5.27</td>
<td>Yokota et al. (1988)</td>
<td>172</td>
</tr>
<tr>
<td>5.28</td>
<td>Youngs et al. (1988)</td>
<td>172</td>
</tr>
<tr>
<td>5.29</td>
<td>Kamiyama (1989)</td>
<td>173</td>
</tr>
<tr>
<td>5.30</td>
<td>Trifunac &amp; Lee (1989)</td>
<td>173</td>
</tr>
<tr>
<td>5.31</td>
<td>Atkinson (1990)</td>
<td>174</td>
</tr>
<tr>
<td>5.32</td>
<td>Campbell (1990)</td>
<td>175</td>
</tr>
<tr>
<td>5.33</td>
<td>Dahle et al. (1990b) &amp; Dahle et al. (1990a)</td>
<td>175</td>
</tr>
<tr>
<td>5.34</td>
<td>Tamura et al. (1990)</td>
<td>175</td>
</tr>
<tr>
<td>5.35</td>
<td>Tsai et al. (1990)</td>
<td>176</td>
</tr>
<tr>
<td>5.36</td>
<td>Crouse (1991)</td>
<td>176</td>
</tr>
<tr>
<td>5.37</td>
<td>Dahle et al. (1991)</td>
<td>176</td>
</tr>
<tr>
<td>5.38</td>
<td>I.M. Idriss (1991) reported in Idriss (1993)</td>
<td>178</td>
</tr>
<tr>
<td>5.39</td>
<td>Mohammadioun (1991)</td>
<td>178</td>
</tr>
<tr>
<td>5.40</td>
<td>Benito et al. (1992)</td>
<td>178</td>
</tr>
<tr>
<td>5.41</td>
<td>Niazi &amp; Bozorgnia (1992)</td>
<td>179</td>
</tr>
<tr>
<td>5.42</td>
<td>Tento et al. (1992)</td>
<td>180</td>
</tr>
<tr>
<td>5.43</td>
<td>Boore et al. (1993) &amp; Boore et al. (1997)</td>
<td>180</td>
</tr>
<tr>
<td>5.44</td>
<td>Caillot &amp; Bard (1993)</td>
<td>180</td>
</tr>
<tr>
<td>5.45</td>
<td>Campbell (1993)</td>
<td>181</td>
</tr>
</tbody>
</table>
5.46 Sadigh et al. (1993) & Sadigh et al. (1997) ....................................................... 181
5.47 Sun & Peng (1993) .......................................................... 182
5.48 Boore et al. (1994a) & Boore et al. (1997) ......................................................... 182
5.49 Climent et al. (1994) .......................................................... 182
5.50 Fukushima et al. (1994) & Fukushima et al. (1995) ........................................ 183
5.51 Lawson & Krawinkler (1994) ......................................................... 183
5.53 Mohammadioun (1994a) ......................................................... 184
5.54 Mohammadioun (1994b) ......................................................... 185
5.55 Musson et al. (1994) ......................................................... 185
5.56 Theodulidis & Papazachos (1994) ......................................................... 185
5.57 Dahle et al. (1995) ......................................................... 186
5.58 Lee & Trifunac (1995) ......................................................... 186
5.61 Bommer et al. (1996) ......................................................... 187
5.64 Molas & Yamazaki (1996) ......................................................... 188
5.65 Ohno et al. (1996) ......................................................... 188
5.66 Sabetta & Pugliese (1996) ......................................................... 188
5.67 Spudich et al. (1996) & Spudich et al. (1997) ................................................ 189
5.68 Abrahamson & Silva (1997) ......................................................... 189
5.69 Atkinson (1997) ......................................................... 190
5.71 Schmidt et al. (1997) ......................................................... 192
5.72 Youngs et al. (1997) ......................................................... 192
5.73 Bommer et al. (1998) ......................................................... 193
6. General characteristics of attenuation relations for spectral ordinates ........................................ 206

7. Acknowledgements ...................................................................................................................... 217
1. PREFACE

ESEE Report 01-1 ‘A comprehensive worldwide summary of strong-motion attenuation relationships for peak ground acceleration and spectral ordinates (1969 to 2000)’ (Douglas, 2001a) was completed and released in January 2001. A report detailing errata of the first report and additional studies was released in October 2002 (Douglas, 2002). These two reports were used by Douglas (2003) as a basis for a review of previous equations. Since these two report were released some further minor errors have been found in the text and tables of the original two reports, and additional studies have been found in the literature which were not included in ESEE 01-1 or the follow-on report. Also some new studies have been published. Rather than produce a new report listing errata and additions it was decided to produce a new report which includes details on all the studies listed in the first two reports (with the corrections made) and also includes information on the additional studies.
2. INTRODUCTION

A number of reviews of attenuation studies have been made in the past which provide a good summary of the methods used, the results obtained and the problems associated with such relations. Trifunac & Brady (1975, 1976) provide a brief summary and comparison of published relations. Idriss (1978) presents a comprehensive review of published attenuation relations up until 1978, including a number which are not easily available. Boore & Joyner (1982) provide a review of attenuation studies published in 1981 and comment on empirical prediction of strong ground motion in general. Campbell (1985) contains a full survey of attenuation equations up until 1985. Joyner & Boore (1988) give an excellent analysis of ground motion prediction methodology in general, and attenuation relations in particular; Joyner & Boore (1996) update this by including more recent studies. Ambraseys & Bommer (1995) provide an overview of relations which are used for seismic design in Europe although they do not provide details about methods used. Recent reviews are Campbell (2003b,a) and Bozorgnia & Campbell (2004a), which provide the coefficients for a number of commonly-used equations for peak ground acceleration and spectral ordinates.

A summary of the methods used to derive the equations is presented here. This report contains details of all studies for peak ground acceleration and response spectra which could be found in the literature (journals, conference proceedings and technical reports) although some may have been inadvertently missed.

Some of the studies included here have not been seen but are reported in other publications and hence the information given here may not be complete or correct.

Equations for single earthquakes (e.g. Bozorgnia et al., 1995) or for earthquakes of approximately the same size (e.g. Sadigh et al., 1978) are excluded due to their limited usefulness. Also excluded are those relations based on intensity measurements (e.g. Battis, 1981), those based on theoretical ground motions (stochastic source models etc.) (e.g Atkinson & Boore, 1990) or those originally developed to yield the magnitude of an earthquake (e.g. Espinosa, 1980), i.e. the regression is performed the wrong way round, which should not be used for the prediction of ground motion at a site. Studies which derive graphs to give predictions (e.g. Schnabel & Seed, 1973) are not considered in this report nor are those nonparametric formulations which provide predictions for different combinations of distance and magnitude (e.g. Anderson, 1997), both of which are more difficult to use for seismic hazard analysis than those which give a single formula.

All the studies which present the same attenuation relationship are mentioned at the top of the section and in the tables of general characteristics (Tables 4.1 & 6.1). The information contained within each section, and within the table, is the sum of information contained within each of the publications, i.e. not all the information may be in one study.
To make it easier to understand the functional form of attenuation equation adopted in each study the equations are given with variable names replacing actual coefficients and the derived coefficients and the standard deviation, \( \sigma \), are given separately (for peak ground acceleration equations). These coefficients are given only for completeness and if an equation is to be used then the original reference should be consulted. If a coefficient is assumed before the analysis is performed then the number is given in the formula.

Obviously all the details from each publication cannot be included in this report because of lack of space but the most important details of the methods and data used are retained.

The number of records within each site and source mechanism category are given if this information was reported by the authors of the study. Sometimes these totals were found by counting the numbers in each category using the tables listing the data used.

In the equations unless otherwise stated, \( D, d, R, r, \Delta \) or similar are distance and \( M \) or similar is magnitude and all other independent variables are stated. PGA is peak ground acceleration, PGV is peak ground velocity and PSV is relative pseudo-velocity.

In Tables 4.1 & 6.1 the gross characteristics of the data used and equation obtained is only given for the main equation in the study. The reader should refer to the section on a particular publication for information on other equations derived in the study.

No discussion of the merits, ranges of applicability or limitations of any of the relationships is included herein except those mentioned by the authors or inherent in the data used. The ground motion models are reported in the form given in the original references except sometimes the equation is simplified if this can be easily done.

This report provides a comprehensive summary of strong motion attenuation studies which can be used for finding references to useful works and for using as a basis for reviews of previously published equations. Note however that the size of this report means that it may contain some errors or omissions.
3. SUMMARY OF PUBLISHED ATTENUATION RELATIONS FOR PEAK GROUND ACCELERATION

3.1 Esteva & Rosenblueth (1964)

- Ground motion model is:
  \[ a = c \exp(\alpha M) R^{-\beta} \]
  where \( a \) is in \( \text{cms}^{-2} \), \( c = 2000 \), \( \alpha = 0.8 \) and \( \beta = 2 \) (\( \sigma \) is not given).

3.2 Kanai (1966)

- Ground motion model is:
  \[ a = a_1 \sqrt{T_G} 10^{a_2 M - P \log_{10} R + Q} \]
  \[ P = a_3 + a_4 / R \]
  \[ Q = a_5 + a_6 / R \]
  where \( a \) is in \( \text{cms}^{-2} \), \( a_1 = 5 \), \( a_2 = 0.61 \), \( a_3 = 1.66 \), \( a_4 = 3.60 \), \( a_5 = 0.167 \) and \( a_6 = -1.83 \) (\( \sigma \) is not given).
- \( T_G \) is the fundamental period of the site.

3.3 Milne & Davenport (1969)

- Ground motion model is:
  \[ A = \frac{a_1 e^{a_2 M}}{a_3 e^{a_4 M} + \Delta^2} \]
  where \( A \) is in percentage of \( g \), \( a_1 = 0.69 \), \( a_2 = 1.64 \), \( a_3 = 1.1 \) and \( a_4 = 1.10 \) (\( \sigma \) not given).
- Use data from Esteva & Rosenblueth (1964).

3.4 Esteva (1970)

- Ground motion model is:
  \[ a = c_1 e^{c_2 M} (R + c_3)^{-c_4} \]
  where \( a \) is in \( \text{cms}^{-2} \), \( c_1 = 1230 \), \( c_2 = 0.8 \), \( c_3 = 25 \), \( c_4 = 2 \) and \( \sigma = 1.02 \) (in terms of natural logarithm).
• Records from soils comparable to stiff clay or compact conglomerate.
• Records from earthquakes of moderate duration.

3.5 Denham & Small (1971)

• Ground motion model is:
  \[
  \log Y = b_1 + b_2 M + b_3 \log R
  \]
  where \( Y \) is in g, \( b_1 = -0.2 \), \( b_2 = 0.2 \) and \( b_3 = -1.1 \) (\( \sigma \) not given).
• Records from near dam on recent unconsolidated lake sediments which are \( \geq 50 \text{ m} \) thick.
• Note need for more points and large uncertainty in \( b_1 \), \( b_2 \) and \( b_3 \).

3.6 Donovan (1973)

• Ground motion model is:
  \[
  y = b_1 e^{b_2 M (R + 25)^{-b_3}}
  \]
  where \( y \) is in gal, \( b_1 = 1080 \), \( b_2 = 0.5 \), \( b_3 = 1.32 \) and \( \sigma = 0.71 \). 25 adopted from Esteva (1970).
• 214 (32\%) records from San Fernando (9/2/1971) earthquake and 53\% of records with PGA less than 0.5 ms\(^{-2}\).
• Considers portions of data and finds magnitude dependence increases with increasing distance from source and more small accelerations increase magnitude dependence. Thus magnitude and distance cannot be considered independent variables.

3.7 Denham et al. (1973)

• Ground motion model is:
  \[
  \log Y_a = a_1 + a_2 M_L + b_3 \log R
  \]
  where \( Y_a \) is in cm/s\(^2\), \( a_1 = 2.91 \), \( a_2 = 0.32 \) and \( a_3 = -1.45 \) (\( \sigma \) is not given).
• Use records from Yonki station (20 records) which is on 50 m of recent alluvium and from Paguna station (5 records) which is on unconsolidated volcanic rock.
• Question validity of combining data at the two sites because of differences in geological foundations.
• Note large standard errors associated with coefficients preclude accurate predictions of ground motions.
• Also derive equation for Yonki station separately.
3.8 Esteva & Villaverde (1973) & Esteva (1974)

- Ground motion model is:
  \[ Y_c = b_1 e^{b_2 M (R + b_4)}^{-b_3} \]
  where \( Y_c \) is in \( \text{cm/s}^2 \), \( b_1 = 5600 \), \( b_2 = 0.8 \), \( b_3 = 2 \), \( b_4 = 40 \) and \( \sigma = 0.64 \) (in terms of natural logarithm).

3.9 Orphal & Lahoud (1974)

- Ground motion model is:
  \[ A = \lambda 10^\alpha M R^\beta \]
  where \( A \) is in \( g \), \( \lambda = 6.6 \times 10^{-2} \), \( \alpha = 0.40 \), \( \beta = -1.39 \) and \( \sigma = 1.99 \) (this is multiplication factor).

- Use 113 records with distances between 15 to 350 km from San Fernando earthquake to find distance dependence, \( \beta \).

- Use 27 records of Wiggins Jr. (1964) from El Centro and Ferndale areas, with magnitudes between 4.1 and 7.0 and distances between 17 and 94 km (assuming focal depth of 15 km), to compute magnitude dependent terms assuming distance dependence is same as for San Fernando.

3.10 Ambraseys (1975b), Ambraseys (1975a) & Ambraseys (1978a)

- Ground motion model is:
  \[ \log Y = b_1 + b_2 M_L + b_3 \log R \]
  where \( Y \) is in \( \text{cm/s}^2 \), \( b_1 = 0.46 \), \( b_2 = 0.63 \), \( b_3 = -1.10 \) and \( \sigma = 0.32^1 \)

- Ambraseys & Bommer (1995) state that uses earthquakes with maximum focal depth of 15 km.

3.11 Trifunac & Brady (1975), Trifunac (1976) & Trifunac & Brady (1976)

- Ground motion model is:
  \[ \log_{10} a_{\max} = \log_{10} A_0 (R) - \log_{10} a_0 (M, p, s, v) \]
  \[ \log_{10} a_0 (M, p, s, v) = \begin{cases} 
  ap + bM + c + ds + ev + f M^2 - f(M - M_{\max})^2 
  & \text{for } M \geq M_{\max} \\
  ap + bM + c + ds + ev + f M^2 
  & \text{for } M_{\max} \geq M \geq M_{\min} \\
  ap + b M_{\min} + c + ds + ev + f M_{\min}^2 
  & \text{for } M \leq M_{\min} 
\end{cases} \]

\(^1\) From Ambraseys & Bommer (1995).
where $a_{\text{max}}$ is in $\text{cm/s}^{-2}$, $\log_{10} A_0(R)$ is an empirically determined attenuation function from Richter (1958) used for calculation of $M_L$, $p$ is confidence level and $v$ is component direction ($v = 0$ for horizontal and 1 for vertical). Coefficients are: $a = -0.898$, $b = -1.789$, $c = 6.217$, $d = 0.060$, $e = 0.331$, $f = 0.186$, $M_{\text{min}} = 4.80$ and $M_{\text{max}} = 7.50$ ($\log_{10} A_0(R)$ not given here due to lack of space).

- Use three site categories:
  
  $s = 0$ Alluvium or other low velocity ‘soft’ deposits: 63% of records.
  
  $s = 1$ ‘Intermediate’ type rock: 23% of records.
  
  $s = 2$ Solid ‘hard’ basement rock: 8% of records.

- Exclude records from tall buildings.

- Do not use data from other regions because attenuation varies with geological province and magnitude determination is different in other countries.

- Records baseline and instrument corrected. Accelerations thought to be accurate between 0.07 and 25 Hz or between 0.125 and 25 Hz for San Fernando records.

- Most records (71%) from earthquakes with magnitudes between 6.0–6.9, 22% are from 5.0–5.9, 3% are from 4.0–4.9 and 3% are from 7.0–7.7 (note barely adequate data from these two magnitude ranges). 63% of data from San Fernando earthquake.

- Note that for large earthquakes, i.e. long faults, $\log_{10} A_0(R)$ would have a tendency to flatten out for small epicentral distances and for low magnitude shocks curve would probably have a large negative slope. Due to lack of data $\lesssim 20 \text{ km}$ this is impossible to check.

- Note difficulty in incorporating anelastic attenuation because representative frequency content of peak amplitudes change with distance and because relative contribution of digitization noise varies with frequency and distance.

- Note that $\log_{10} A_0(R)$ may be unreliable for epicentral distances less than 10 km because of lack of data.

- Change of slope in $\log_{10} A_0(R)$ at $R = 75 \text{ km}$ because for greater distances main contribution to strong shaking from surface waves, which are attenuated less rapidly ($\sim 1/R^{1/2}$) than near-field and intermediate-field ($\sim 1/R^{2-4}$), or far-field body waves ($\sim 1/R$).

- Note lack of data to reliably characterise $\log_{10} a(M,p,s,v)$ over a sufficiently broad range of their arguments. Also note high proportion of San Fernando data may bias results.

- Firstly partition data into four magnitude dependent groups: 4.0–4.9, 5.0–5.9, 6.0–6.9 and 7.0–7.9. Subdivide each group into three site condition subgroups (for $s = 0, 1$ and 2). Divide each subgroup into two component categories (for $v = 0$ and 1). Calculate $\log_{10} a_0(M,p,s,v) = M + \log_{10} A_0(R) - \log_{10} a_{\text{max}}$ within each of the 24 parts. Arrange each set of $n \log_{10} a_0$ values into decreasing order with increasing $n$. Then $m$th data point (where $m$ equals integer part of $pm$) is estimate for upper bound of $\log_{10} a_0$ for $p\%$ confidence level. Then fit results using least squares to find $a, \ldots f$. 

• Check number of PGA values less than confidence level for \( p = 0.1, \ldots, 0.9 \) to verify adequacy of bound. Find simplifying assumptions are acceptable for derivation of approximate bounds.

3.12 Blume (1977)

• Ground motion model is:
\[
a = b_1 e^{b_2 M_L (R + 25)^{-b_3}}
\]
where \( a \) is in gal, for \( M_L \leq 6\frac{1}{2} \), \( b_1 = 0.318 \times 29^{1.14b} \), \( b_2 = 1.03 \), \( b_3 = 1.14b \) and \( \sigma = 0.930 \) (in terms of natural logarithm) and for \( M_L > 6\frac{1}{2} \), \( b_1 = 26.0 \times 29^{1.22b} \), \( b_2 = 0.432 \), \( b_3 = 1.22b \) and \( \sigma = 0.592 \) (in terms of natural logarithm).

• Assumes all earthquakes have focal depth of 8 km.

• Makes no distinction for site conditions in first stage where uses only earthquake records.

• Studies effects of PGA cutoff (no cutoff, 0.01, 0.02 and 0.05 ms\(^{-2}\)), distance cutoff (no cutoff and < 150 km) and magnitude cutoff (all, \( \geq 5\frac{1}{2} \), \( \geq 6 \), \( \geq 6\frac{1}{2} \), \( \geq 6\frac{3}{4} \) and \( \leq 6\frac{1}{2} \)).

• Selects \( 6\frac{1}{2} \) as optimum magnitude cutoff but uses all data to derive equation for \( M_L \leq 6\frac{1}{2} \) because not much difference and dispersion is slightly lower (in terms of \( \pm 1 \) standard deviation have 2.53 and 2.61).

• In second stage uses only records from underground nuclear explosions, consistent with natural earthquake records, to derive site factor.

• Uses 1911 alluvium and 802 rock records and derive PGA ratio of alluvium to rock assuming their PGAs equal at 4 km.

• Finds site impedance \( \rho V_s \), where \( \rho \) is density and \( V_s \) is shear-wave velocity under site, is best measure of site condition. Use 2000 fps (600 ms\(^{-1}\)) as shear-wave velocity of alluvium stations.

• Multiplies equation (after taking logarithms) by \( \bar{b} = \frac{1}{2} \log_{10}(\rho V_s) \) and normalise to 4 km.

• Notes may not be a good model for other regions.

3.13 McGuire (1977)

• Ground motion model is:
\[
E[v] = a 10^{bM} (R + 25)^{-c}
\]
where \( E \) indicates expectation, \( v \) is in gal, \( a = 472 \), \( b = 0.278 \), \( c = 1.301 \).

• Excludes records for which significant soil amplification established but makes no distinction between rock and soil sites.
3. Summary of published attenuation relations for peak ground acceleration

- Focal depths between 9 and 70 km with most about 10 km. Most records from earthquakes with magnitudes about 6.5 and most distances less than 50 km. Uses records from 21 different sites.

- Notes that physical laws governing ground motion near the source are different than those governing motion at greater distances therefore excludes records with epicentral distance or distance to fault rupture smaller than one-half of estimated length of rupture.

- Examines correlation among the records but find negligible effect.

3.14 Milne (1977)

- Ground motion model is:
  \[ ACC = a_1 e^{a_2 M} R^{a_3} \]
  where ACC is in g, \( a_1 = 0.04 \), \( a_2 = 1.00 \) and \( a_3 = -1.4 \).

3.15 Ambraseys (1978b)

- Ground motion model is:
  \[ \bar{a} = a_1 R^{a_2} \exp(a_3 \bar{M}) \]
  where \( \bar{a} \) is in cms\(^{-2} \), \( a_1 = 1.31 \), \( a_2 = -0.92 \) and \( a_3 = 1.455 \) (\( \sigma \) is not given).

- Uses data from former USSR, former Yugoslavia, Portugal, Italy, Iran, Greece and Pakistan.

- Peak ground accelerations have either been taken from true-to-scale accelerograms or have been supplied by local networks. Records have not been high- or low-pass filtered because it was found not to work with short records.

- Believes body-wave or local magnitude are the appropriate magnitude scales because interested in the high-frequency range of spectra, which are seen and sampled by strong-motion instruments, and most engineering structures have high natural frequencies.

- Most of the magnitudes were recalculated using P-waves of periods of not more than 1.2 s because it was found that the magnitude was dependent on the period of the P-waves used for its determination.

- Groups data into intervals of 0.5 magnitude units by 10 km in which the mean and standard deviations of the PGAs is calculated. This grouping minimises distance and magnitude-dependent effects. Notes that the number of observations is barely sufficient to allow a statistical treatment of the data and hence only test general trend. Notes that scatter is significant and decreases with increasing magnitude.
3. Summary of published attenuation relations for peak ground acceleration

3.16 Donovan & Bornstein (1978)

- Ground motion model is:
  \[ y = b_1 e^{b_2 M(R + 25)^{-b_3}} \]
  
  where
  \[ b_1 = c_1 R^{-c_2} \]
  \[ b_2 = d_1 + d_2 \log R \]
  \[ b_3 = e_1 + e_2 \log R \]

  where \( y \) is in \( \text{gal} \), \( c_1 = 2,154,000, \) \( c_2 = 2.10, \) \( d_1 = 0.046, \) \( d_2 = 0.445, \) \( e_1 = 2.515, \)
  \( e_2 = -0.486, \) for \( y = 0.01 \text{ g} \) \( \sigma = 0.5, \) for \( y = 0.05 \text{ g} \) \( \sigma = 0.48, \) for \( y = 0.10 \text{ g} \) \( \sigma = 0.46 \) and for \( y = 0.15 \text{ g} \) \( \sigma = 0.41 \) (in terms of natural logarithm).

  Use 25 because assume energy centre of Californian earthquakes to be at depth 5 km.

- Consider two site conditions but do not model:
  1. Rock: (21 records)
  2. Stiff soil: (38 records)

- 32% of records from San Fernando (9/2/1971) but verifies that relationship is not significantly biased by this data.

- Most records within 50 km and most from earthquakes with magnitudes of about 6.5.

- Recognises that magnitude and distance are not independent variables.

- Find \( b_1, b_2 \) and \( b_3 \) by dividing data according to distance and computing \( b \) parameters for each set using least squares. Find a distinct trend with little scatter.

3.17 Faccioli (1978)

- Ground motion model is:
  \[ y = a10^{bM(R + 25)^{-c}} \]
  
  where \( y \) is in \( \text{gal} \), \( a = 108.60, \) \( b = 0.265, \) \( c = 0.808 \) and \( \sigma = 0.236 \) (in terms of logarithm to base 10).

- Records from sites underlain by cohesive or cohesionless soils with shear-wave velocities less than about 100 m s\(^{-1}\) and/or standard penetration resistance \( N \leq 10 \) in uppermost 10 m with layers of considerably stiffer materials either immediately below or at depths not exceeding a few tens of metres.

- Focal depths between 9 and 100 km.

- free-field accelerograms, to minimize soil-structure interaction.

- Excludes records with PGA < 0.4 m s\(^{-2}\).
3. Summary of published attenuation relations for peak ground acceleration

- 21 Japanese records processed with frequency cutoffs of bandpass filter, for baseline correction, adjusted so as to account for length and mean sampling rate of records and response characteristics of SMAC-2. 4 of remaining 7 records processed in same way.

3.18 McGuire (1978)

- Ground motion model is:
\[
\ln x = b_1 + b_2 M + b_3 \ln R + b_4 Y_s
\]
where \( x \) is in \( \text{cms}^{-2} \), \( b_1 = 3.40 \), \( b_2 = 0.89 \), \( b_3 = -1.17 \), \( b_4 = -0.20 \) and \( \sigma = 0.62 \).

- Uses two site categories:
\( Y_s = 0 \) Rock: sedimentary or basement rock or soil less than 10 m thick, 11 records.
\( Y_s = 1 \) Soil: alluvium or other soft material greater than 10 m thick, 59 records.

- Uses records from basement of buildings or from ‘free-field’. Uses no more than seven records from same earthquake and no more than nine from a single site to minimize underestimation of calculated variance. Retains records which give a large distance and magnitude range.

- Notes that near-field ground motion governed by different physical laws than intermediate and far field so excludes near-field data, for example El Centro (19/5/1940) and Cholame-2, from Parkfield earthquake (28/6/1966)

- Considers a distance dependent site term but not statistically significant. Also uses a magnitude dependent site term and although it was statistically significant it did not reduce the scatter and also since largest magnitude for a rock site is 6.5, result may be biased.


- Ground motion model is:
\[
\ln y = \ln A + BM_s + E \ln[R + d \exp(f M_s)]
\]
where \( y \) is in \( \text{cms}^{-2} \), \( d = 0.864 \) and \( f = 0.463 \) and for path A (rock): \( A = 157 \) (for median), \( A = 186 \) (for mean), \( B = 1.04 \) and \( E = -1.90 \), for path A (stiff soil): \( A = 191 \) (for median), \( A = 224 \) (for mean), \( B = 0.823 \) and \( E = -1.56 \) and for path B (stiff soil): \( A = 284 \) (for median), \( A = 363 \) (for mean), \( B = 0.587 \) and \( E = -1.05 \) (\( \sigma \) not given).

- Separate equations for two types of path:
  A Shallow focus earthquakes (California, Japan, Nicaragua and India), 63 records.
  B Subduction (Benioff) zone earthquakes (Japan and South America), 23 earthquakes, \( 5.3 \leq M_s \leq 7.8 \), 32 records.

- Use two site categories for path A earthquakes for which derive separate equations:
3. Summary of published attenuation relations for peak ground acceleration

1. Rock: 21 records.
2. Stiff soil: 42 records.

Use only stiff soil records for deriving subduction zone equation.

- Most earthquakes for path A have $5 \leq M_s \leq 6.7$.
- All data corrected. PGA for corrected Japanese and South American records much higher than uncorrected PGA.

3.20 Cornell et al. (1979)

- Ground motion model is:
  \[
  \ln A_p = a + b M_L + c \ln(R + 25)
  \]
  where $A_p$ is in cms$^{-2}$, $a = 6.74$, $b = 0.859$, $c = -1.80$ and $\sigma = 0.57$.
- No more than 7 records from one earthquake to avoid biasing results.
- Records from basements of buildings or free-field.

3.21 Aptikaev & Kopnichev (1980)

- Ground motion model is:
  \[
  \log A_e = a_1 M + a_2 \log R + a_3
  \]
  where $A_e$ is in cms$^{-2}$, for $A_e \geq 160$ cms$^{-2}$ $a_1 = 0.28$, $a_2 = -0.8$ and $a_3 = 1.70$ and for $A_e < 160$ cms$^{-2}$ $a_1 = 0.80$, $a_2 = -2.3$ and $a_3 = 0.80$ ($\sigma$ not given).
- As a rule, PGA corresponds to S-wave.
- Use five source mechanism categories (about 70 records, 59 earthquakes from W. N. America including Hawaii, Guatemala, Nicaragua, Chile, Peru, Argentina, Italy, Greece, Romania, central Asia, India and Japan):
  1. Contraction faulting (uplift and thrust), about 16 earthquakes.
  2. Contraction faulting with strike-slip component, about 6 earthquakes.
  4. Strike-slip with dip-slip component, about 6 earthquakes.
  5. Dip-slip, about 9 earthquakes.
- Use these approximately 70 records to derive ratios of mean measured, $A_0$, to predicted PGA, $A_e$, $\log(A_0/A_e)$, and for ratios of mean horizontal to vertical PGA, $\log A_h/A_v$, for each type of faulting. Use every earthquake with equal weight independent of number of records for each earthquake.
3. Summary of published attenuation relations for peak ground acceleration

- Results are:

<table>
<thead>
<tr>
<th>Category 1</th>
<th>Category 2</th>
<th>Category 3</th>
<th>Category 4</th>
<th>Category 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>( \log A_0/A_e )</td>
<td>0.35 ± 0.13 (16)</td>
<td>0.11 ± 0.17 (5)</td>
<td>0.22 ± 0.08 (17)</td>
<td>0.06 ± 0.13 (6)</td>
</tr>
<tr>
<td>( \log A_h/A_v )</td>
<td>0.32 ± 0.13 (12)</td>
<td>0.32 ± 0.08 (5)</td>
<td>0.27 ± 0.07 (12)</td>
<td>0.18 ± 0.10 (5)</td>
</tr>
</tbody>
</table>

where ± gives 0.7 confidence intervals and number in brackets is number of earthquakes used.

- Also calculate mean envelope increasing speed for P-wave amplitudes, \( A \), obtained at teleseismic distances: \( n = d \ln A/dt \), where \( t \) is time for P-wave arrival and try to relate to ratios for each type of faulting.

3.22 Blume (1980)

- Ground motion model is:

\[
a = b_1 e^{b_2 M (R + k) - b_3}
\]

where \( a \) is in gal, for method using distance partitioning \( b_1 = 18.4, b_2 = 0.941, b_3 = 1.27 \) and \( k = 25 \) and for ordinary one-stage method \( b_1 = 102, b_2 = 0.970, b_3 = 1.68 \) and \( k = 25 \) (\( \sigma \) not given).

- Does not use PGA cutoff because PGA is, by itself, a poor index of damage in most cases.

- Mean magnitude is 5.4 and mean distance is 84.4 km.

- Notes problem of regression leverage for some attenuation studies. Lots of data in fairly narrow distance band, e.g. records from San Fernando earthquake, can dominate regression and lead to biased coefficients.

- Divides data into ten distance bands (A-J) which are 10 km wide up to 60 km and then 60-99.9 km, 100-139.9 km, 140-199.9 km and ≥ 200 km. Fits \( \log_{10} a = bM - c \) to data in each band and fits ground motion model to selected point set in \( M, R \) and \( a \).

- Also fits equation using all data using normal least squares.

- Adds 52 records (3.2 ≤ \( M \) ≤ 6.5, 5 ≤ \( R \) ≤ 15 km) and repeats; finds little change.

3.23 Iwasaki et al. (1980)

- Ground motion model is:

\[
\text{PGA} = a_1 10^{a_2 M (\Delta + 10)^{a_3}}
\]

where PGA is in gal, for type I sites \( a_1 = 46.0, a_2 = 0.208 \) and \( a_3 = -0.686 \), for type II sites \( a_1 = 24.5, a_2 = 0.333 \) and \( a_3 = -0.924 \), for type III sites \( a_1 = 59.0, a_2 = 0.261 \) and \( a_3 = -0.886 \), for type IV sites \( a_1 = 12.8, a_2 = 0.432, a_3 = -1.125 \) and for all sites \( a_1 = 34.1, a_2 = 0.308 \) and \( a_3 = -0.925 \) (\( \sigma \) not given).

- Use four site categories:
3. Summary of published attenuation relations for peak ground acceleration

Type I  Tertiary or older rock (defined as bedrock) or diluvium with depth to bedrock, $H < 10\,\text{m}$, 29 records.
Type II  Diluvium with $H \geq 10\,\text{m}$ or alluvium with $H < 10\,\text{m}$, 74 records.
Type III Alluvium with $H < 25\,\text{m}$ including soft layer (sand layer vulnerable to liquefaction or extremely soft cohesive soil layer) with thickness $< 5\,\text{m}$, 130 records.
Type IV Other than above, usually soft alluvium or reclaimed land, 68 records.

- Select earthquakes with Richter magnitude $\geq 5.0$, hypocentral depth $\leq 60\,\text{km}$ and which include at least one record with PGA $\geq 50\,\text{gals}$ ($0.5\,\text{ms}^{-2}$). Exclude records with PGA $< 10\,\text{gals}$ ($0.1\,\text{ms}^{-2}$).
- All records for $M \geq 7.0$ are from distance $> 60\,\text{km}$.
- Do regression separately for each soil category and also for combined data.

3.24  Ohsaki et al. (1980a)

- Ground motion model is:
  \[ A = 10^{a_1 M - a_2 \log x + a_3} \]
  where $A$ is in $\text{cm}\text{s}^{-2}$, for horizontal PGA $a_1 = 0.440$, $a_2 = 1.381$ and $a_3 = 1.04$ and for vertical PGA $a_1 = 0.485$, $a_2 = 1.85$ and $a_3 = 1.38$ ($\sigma$ not given).
- All records from free-field bedrock sites.

3.25  Campbell (1981)

- Ground motion model is:
  \[ \text{PGA} = a \exp(bM)[R + c_1 \exp(c_2 M)]^{-d} \]
  where PGA is in $\text{g}$, for unconstrained model $a = 0.0159$, $b = 0.868$, $c_1 = 0.0606$, $c_2 = 0.700$, $d = 1.09$ and $\sigma = 0.372$ (on natural logarithm) and for constrained model $a = 0.0185$, $b = 1.28$, $c_1 = 0.147$, $c_2 = 0.732$, $d = 1.75$ and $\sigma = 0.384$ (in terms of natural logarithm).
  Uses this functional form because capable of modelling possible nonlinear distance scaling in near field and because distance at which transition from near field to far field occurs probably proportional to fault rupture zone size.
- Considers six site classifications but does not model:
  A  Recent alluvium: Holocene Age soil with rock $\geq 10\,\text{m}$ deep, 71 records.
  B  Pleistocene deposits: Pleistocene Age soil with rock $\geq 10\,\text{m}$ deep, 22 records.
  C  Soft rock: Sedimentary rock, soft volcanics, and soft metasedimentary rock, 14 records.
  D  Hard rock: Crystalline rock, hard volcanics, and hard metasedimentary rock, 9 records.
E Shallow soil deposits: Holocene or Pleistocene Age soil $< 10$ m deep overlying soft or hard rock, 17 records. Not used in analysis.

F Soft soil deposits: extremely soft or loose Holocene Age soils, e.g. beach sand or recent floodplain, lake, swamp, estuarine, and delta deposits, 1 record. Not used in analysis.

- Notes that data from areas outside western USA may be substantially different than those from western USA due to tectonics and recording practices but far outweighed by important contribution these data can make to understanding of near-source ground motion.

- Notes use of only near-source data has made differences in anelastic attenuation negligible to inherent scatter from other factors.

- Selects data from shallow tectonic plate boundaries generally similar to western N. America, deep subduction events excluded because of differences in travel paths and stress conditions.

- Selects data from instruments with similar dynamic characteristics as those used in USA to avoid bias, therefore excludes data from SMAC accelerographs in Japan.

- Selects data which meet these criteria:
  1. Epicentres known with an accuracy of $5$ km or less, or accurate estimate of closest distance to fault rupture surface known.
  2. Magnitudes accurate to within $0.3$ units.
  3. Distances were within $20$, $30$, and $50$ km for magnitudes less than $4.75$ between $4.75$ and $6.25$ and greater than $6.25$ respectively. Only uses data from earthquakes with magnitude $\geq 5.0$ because of greatest concern for most design applications.
  4. Hypocentres or rupture zones within $25$ km of ground surface.
  5. PGA $\geq 0.2 \text{ ms}^{-2}$ for one component, accelerographs triggered early enough to capture strong phase of shaking.
  6. Accelerograms either free-field, on abutments of dams or bridges, in lowest basement of buildings, or on ground level of structures without basements. Excluded Pacoima Dam record, from San Fernando (9/2/1971) earthquake due to topographic, high-frequency resonance due to large gradation in wave propagation velocities and amplification due to E-W response of dam.

- Well distributed data, correlation between magnitude and distance only $6\%$.

- Uses PGA from digitised, unprocessed accelerograms or from original accelerograms because fully processed PGAs are generally smaller due to the $0.02$ s decimation and frequency band-limited filtering of records.

- Uses mean of two horizontal components because more stable peak acceleration parameter than either single components taken separately or both components taken together.

- Magnitude scale chosen to be generally consistent with $M_w$. Division point between using $M_L$ and $M_s$ varied between $5.5$ and $6.5$; finds magnitudes quite insensitive to choice.
• Notes $d_r$ is a statistically superior distance measure than epicentral or hypocentral and is physically consistent and meaningful definition of distance for earthquakes having extensive rupture zones.

• Does not use all data from San Fernando earthquake to minimize bias due to large number of records.

• Uses seven different weighting schemes, to control influence of well-recorded earthquakes (e.g. San Fernando and Imperial Valley earthquakes). Giving each record or each earthquake equal weight not reasonable representation of data. Uses nine distance dependent bins and weights each record by a relative weighting factor $1/n_{i,j}$, where $n_{i,j}$ is total number of recordings from $i$th earthquake in $j$th interval.

• Finds unconstrained coefficients and all coefficients statistically significant at 99%.

• Finds coefficients with $d$ constrained to 1.75 (representative of far-field attenuation of PGA) and $c_2 = b/d$, which means PGA is independent of magnitude at the fault rupture surface. All coefficients statistically significant at 99%. Notes similarity between two models.

• Plots normalised weighted residuals against distance, magnitude\(^2\) and predicted acceleration\(^2\). Finds that residuals uncorrelated, at 99%, with these variables.

• Normal probability plots, observed distribution of normalised weighted residuals and Kolmogorov-Smirnov test, at 90%, confirms that PGA can be accepted as being lognormally distributed.

• Finds effects of site geology, building size, instrument location and mechanism to be extensively interrelated so selects only records from free-field or small structures.

• Analyses all selected data, find sites of classes E and F significantly higher PGA, at 90% level, so removes records from E and F.

• Finds differences in PGA from other site categories to be negligible but notes that it cannot be extended to PGV, PGD, spectral ordinates or smaller magnitudes or further distances.

• Distribution with mechanism is: 69 from strike-slip, 40 from reverse, 5 from normal and 2 records from oblique. Finds that reverse fault PGAs are systematically higher, significant at 90%, than those from other fault types although size of bias is due to presence of data from outside N. America.

• Considers soil (A and B) records from small buildings (115 components) and in free-field and those obtained in lowest basement of large buildings (40 components). Finds PGA significantly lower, at 90% level, in large buildings.

• Finds topographic effects for 13 components used in final analysis (and for 11 components from shallow soil stations) to be significantly higher, at 90%, although states size of it may not be reliable due to small number of records.

\(^2\) Not shown in paper.
3. Summary of published attenuation relations for peak ground acceleration

- Removes Imperial Valley records and repeats analysis. Finds that saturation of PGA with distance is not strongly dependent on this single set of records. Also repeats analysis constraining $c_2 = 0$, i.e. magnitude independent saturation, and also constraining $c_1 = c_2 = 0$, i.e. no distance saturation, finds variance when no distance saturation is significantly higher, at 95%, than when there is saturation modelled.

- Finds that magnitude saturation effects in modelling near-source behaviour of PGA is important and $c_2$ is significantly greater than zero at levels of confidence exceeding 99%. Also variance is reduced when $c_2 \neq 0$ although not at 90% or above.

- Repeats analysis using distance to surface projection of fault, finds reduced magnitude saturation but similar magnitude scaling of PGA for larger events.

3.26 Chiaruttini & Siro (1981)

- Ground motion model is:

$$\log a = b_0 + b_{AN} X_{AN} + b_{AB} X_{AB} + b_M M_L + b_d \log d$$

where $a$ is in g/100, $b_0 = 0.04$, $b_{AN} = 0.24$, $b_{AB} = 0.23$, $b_M = 0.41$ and $b_d = -0.99$ ($\sigma$ not given).

- Use three site categories for Friuli records, although note that information is rather superficial:

  ThA Alluvium with depth $> 20$ m, 36 records.

  RI Rock-like: hard rock or stiff soil, 24 records.

  thA Alluvium-like with depth $\leq 20$ m: includes sites for which thickness of deposit is reported to be very small which accounts for a few metres of weathering of underlying bedrock, 60 records.

Alpide belt records divided into two categories: rock-like (25 records) and alluvium-like (40 records).

- Use data from free-field instruments or from instruments in basements of small structures and divide data into three regions: those from 1976 Friuli shocks (120 records) $\Rightarrow X_{AN} = X_{AB} = 0$, those from 1972 Ancona swarm (40 records) $\Rightarrow X_{AN} = 1$ & $X_{AB} = 0$ and those from Alpide Belt (Azores to Pakistan excluding those from Friuli and Ancona) (64 records) $\Rightarrow X_{AN} = 0$ & $X_{AB} = 1$. Exclude records with PGA $< 0.15 \text{ms}^{-2}$ to avoid possible bias at low acceleration values.

- Assume average focal depth of 6 km.

- Note some PGA values derived from velocity records which are retained because compatible with other data. No instrument corrections applied to Friuli records because correction does not substantially alter PGA.

\[3\] Typographic error in their Table 1 because only 14 records are listed for rock-like sites
• Use $M_L$ because determined at short distances and allows homogenous determination from lowest values up to saturation at $M_L = 7.0$ and it is determined at frequencies of nearly $1 \text{ Hz}$, close to accelerographic band.

• Perform regression on PGAs from each of the three regions and each soil type considered within that region.

• Group rock-like (R) and thick alluvium (ThA) records together for Friuli. Find $b_d$ for Friuli equations derived for thin alluvium-like and rock and thick alluvium not significantly different but $b_M$ is significantly different, at 95% level. Repeat analysis using only Tolmezzo records because of large scatter in residuals but decide it is in thA category.

• For Alpide belt equations find $b_M$ is almost the same for Rl and Al records and the difference in $b_d$ is less than standard error, thus repeat analysis using a dummy variable $X_{Al}$ which equals 0 for Rl and 1 for Al records.

3.27 Joyner & Boore (1981)

• Ground motion model is:

$$\log y = \alpha + \beta M - \log r + br$$

where $r = (d^2 + h^2)^{1/2}$

where $y$ is in g, $\alpha = -1.02, \beta = 0.249, b = -0.00255, h = 7.3$ and $\sigma = 0.26$.

• Use two site categories (not all records have category):

$S = 0$ Rock: sites described as granite, diorite, gneiss, chert, greywacke, limestone, sandstone or siltstone and sites with soil material less than 4 to 5 m thick overlying rock, 29 records. Indicate caution in applying equations for $M > 6.0$ due to limited records.

$S = 1$ Soil: sites described as alluvium, sand, gravel, clay, silt, mud, fill or glacial outwash except where soil less than 4 to 5 m thick, 96 records.

• Restrict data to western North American shallow earthquakes, depth less than 20 km, with $M > 5.0$. Most records from earthquakes with magnitudes less than 6.6.

• Exclude records from base of buildings three or more storeys high and from abutments of dams.

• Exclude records associated with distances which had an uncertainty greater than 5 km.

• Exclude records from distances greater than or equal to the shortest distance to an instrument which did not trigger.

• Six earthquakes recorded at only one station so not included in second stage regression.

• Include quadratic dependence term, $\gamma M^2$, but not significant at 90% level so omitted.

• Include site term, $cS$, but not significant so omitted.
• Examine residuals against distance for difference magnitude ranges, no obvious differences in trends are apparent among the different magnitude classes.

• Consider a magnitude dependent \( h = h_1 \exp(h_2(M - 6.0)) \) but reduction in variance not significant. Also prefer magnitude independent \( h \) because requires fewer parameters.

• Examine effect of removing records from different earthquakes from data.

• Examine effect of different \( h \) on residuals and \( b \). Note coupling between \( h \) and \( b \).

• Note coincidence of anelastic coefficient, \( b \), and measured \( Q \) values. Also note similarity between \( h \) and proportions of depth of seismogenic zone in California.

3.28 Bolt & Abrahamson (1982)

• Ground motion model is:

\[
y = a((x + d)^2 + 1)c e^{-b(x+d)}
\]

where \( y \) is in g, for \( 5 \leq M < 6 \) \( a = 1.2, b = 0.066, c = 0.033, d = 23 \) and standard error for one observation of 0.06 g, for \( 6 \leq M < 7 \) \( a = 1.2, b = 0.044, c = 0.042, d = 25 \) and standard error for one observation of 0.10 g, for \( 7 \leq M \leq 7.7 \) \( a = 0.24 b = 0.022, c = 0.10, d = 15 \) and standard error for one observation of 0.05 g and for \( 6 \leq M \leq 7.7 \) \( a = 1.6, b = 0.026, c = -0.19, d = 8.5 \) and standard error for one observation of 0.09 g.


• Form of equation chosen to satisfy plausible physical assumptions but near-field behaviour is not determined from overwhelming contributions of far-field data.

• Apply nonlinear regression on \( y \) not on \( \log y \) to give more weight to near-field values.

• Split data into four magnitude dependent groups: \( 5 \leq M < 6, 6 \leq M < 7, 7 \leq M \leq 7.7 \) and \( 6 \leq M \leq 7.7 \).

• Use form of equation and regression technique of Joyner & Boore (1981), after removing 25 points from closer than 8 km and find very similar coefficients to Joyner & Boore (1981). Conclude from this experiment and their derived coefficients for the four magnitude groups that using their form of equation predicted near-field accelerations are not governed by far-field data.

• Find no evidence of systematic increase in PGA near the source as a function of magnitude and that the large scatter prevents attaching significance to differences in near-field PGA which are predicted using their attenuation relations for different magnitude ranges.
3. Summary of published attenuation relations for peak ground acceleration

3.29 PML (1982)

- Ground motion model is:
  \[ \ln(a) = C_1 + C_2 M + C_3 \ln[R + C_4 \exp(C_5 M)] \]
  where \(a\) is in g, \(C_1 = -1.17\), \(C_2 = 0.587\), \(C_3 = -1.26\), \(C_4 = 2.13\), \(C_5 = 0.25\) and \(\sigma = 0.543\).
- Use data from Italy (6 records, 6 earthquakes), USA (18 records, 8 earthquakes), Greece (13 records, 9 earthquakes), Iran (3 records, 3 earthquakes), Pakistan (3 records, 1 earthquake), Yugoslavia (3 records, 1 earthquake), USSR (1 record, 1 earthquake), Nicaragua (1 record, 1 earthquake), India (1 record, 1 earthquake) and Atlantic Ocean (1 record, 1 earthquake).
- Develop for use in UK.

3.30 Schenk (1982)

- Ground motion model is:
  \[ \log A_{\text{mean}} = a M - b \log R + c \]
  where \(A_{\text{mean}}\) is in cms\(^{-2}\), \(a = 1.1143\), \(b = 1.576\) and \(c = 2.371\) (\(\sigma\) not given).
- Fits equation by eye because least squares method is often strictly dependent on marginal observations, particularly for little pronounced dependence.

3.31 Brillinger & Preisler (1984)

- Ground motion model is:
  \[ A^{1/3} = a_1 + a_2 M + a_3 \ln(d^2 + a_4^2) \]
  where \(A\) is in g, \(a_1 = 0.432(0.072)\), \(a_2 = 0.110(0.012)\), \(a_3 = -0.0947(0.0101)\), \(a_4 = 6.35(3.24)\), \(\sigma_1 = 0.0351(0.0096)\) (inter-event) and \(\sigma_2 = 0.0759(0.0042)\) (intra-event), where numbers in brackets are the standard errors of the coefficients.
- Use exploratory data analysis (EDA) and alternating conditional expectations (ACE) techniques.
- Firstly sought to determine functions \(\theta(A)\), \(\phi(M)\) and \(\psi(d)\) so that \(\theta(A) \doteqdot \phi(M) + \psi(d)\), i.e. an approximately additive relationship. Prefer additivity because of linearity, ease of interpolation and interpretation and departures from fit are more easily detected.
- Use ACE procedure to find model. For set of data, with response \(y_i\) and predictors \(w_i\) and \(x_i\) find functions to minimize: \(\sum_{i=1}^{n} [\theta(y_i) - \phi(w_i) - \psi(x_i)]^2\) subject to \(\sum \phi(w_i) = 0\), \(\sum \psi(x_i) = 0\), \(\sum \theta(y_i) = 0\) and \(\sum \theta(y_i)^2 = n\). Search amongst unrestricted curves or unrestricted monotonic curves. Use EDA to select specific functional forms from the estimates of \(\theta\), \(\phi\) and \(\psi\) at each data point.
• Do not use weighting because does not seem reasonable from statistical or seismological points of view.

• Do not want any individual earthquake, e.g. one with many records, overly influencing results.

• Note that because each earthquake has its own source characteristics its records are intercorrelated. Therefore use ‘random effects model’ which accounts for peculiarities of individual earthquakes and correlation between records from same event.

• On physical grounds, restrict $\theta$, $\phi$ and $\psi$ to be monotonic and find optimal transformation of magnitude is approximately linear, optimal transformation of distance is logarithmic and cube root is optimal for acceleration transformation.

• Note that need correlations between coefficients, which are provided, to attach uncertainties to estimated PGAs.

• Provide method of linearization to give 95% confidence interval for acceleration estimates.

• Also provide a graphical procedure for estimating accelerations that does not rely on an assumed functional form.

• Examine residual plots (not shown) and found a candidate for an outlying observation (the record from the Hollister 1974 earthquake of 0.011 g at 17.0 km).

• Find that assumption of normality after transformation seems reasonable.


• Ground motion model is:

$$\log y = c_0 + c_1(M - 6) + c_2(M - 6)^2 + c_3 \log r + c_4 r + S$$

where $r = (d^2 + h^2)^{1/2}$

and: $S = \begin{cases} 0 & \text{for rock site} \\ c_6 \log \frac{V}{V_0} & \text{for soil site} \end{cases}$

where $y$ is in g, coefficients $c_0$ to $c_4$, $h$ and $\sigma$ are from Joyner & Boore (1981) and $c_6$ and $V_0$ are not significant at 90% level so do not report them.


• Continuous site classification for soil sites in terms of shear-wave velocity, $V$, to depth of one quarter wavelength of waves of period of concern. $V$ measured down to depths of at least 30 m and then extrapolated using geological data. $V$ known for 33 stations.

• Soil amplification factor based on energy conservation along ray tubes, which is a body wave argument and may not hold for long periods for which surface waves could be important. Does not predict resonance effects.
3. Summary of published attenuation relations for peak ground acceleration

• Regress residuals, $R_{ij}$, w.r.t. motion predicted for rock sites on $\log R_{ij} = P_i + c_6 V_j$, where $j$ corresponds to $j$th station and $i$ to $i$th earthquake. Decouples site effects variation from earthquake-to-earthquake variation. Find unique intercept by requiring average site effect term calculated using shear-wave velocity to be same as that calculated using rock/soil classification.

• No significant, at 90%, correlation between residuals and $V$ for PGA.

• Repeat regression on residuals using $V$ and depth to underlying rock (defined as either shear-wave velocity $> 750 \text{ ms}^{-1}$ or $> 1500 \text{ ms}^{-1}$). Find no correlation.

3.33 Kawashima et al. (1984) & Kawashima et al. (1986)

• Ground motion model is:

$$X(M, \Delta, GC_i) = a(GC_i)10^{b(GC_i)M}(\Delta + 30)^c$$

where $X(M, \Delta, GC_i)$ is in gal, $c = -1.218$, for group 1 sites $a(GC_1) = 987.4$, $b(GC_1) = 0.216$ and $\sigma = 0.216$, for group 2 sites $a(GC_2) = 232.5$, $b(GC_2) = 0.313$ and $\sigma = 0.224$ and for group 3 sites $a(GC_3) = 403.8$, $b(GC_3) = 0.265$ and $\sigma = 0.197$.

• Use three site categories:

Group 1 Tertiary or older rock (defined as bedrock) or diluvium with $H < 10 \text{ m}$ or fundamental period $T_G < 0.2 \text{ s}$.

Group 2 Diluvium with $H \geq 10 \text{ m}$, alluvium with $H < 10 \text{ m}$ or alluvium with $H < 25 \text{ m}$ including soft layer with thickness $< 5 \text{ m}$ or fundamental period $0.2 < T_G < 0.6 \text{ s}$.

Group 3 Other than above, normally soft alluvium or reclaimed land.

• Only includes free-field records with $M_{\text{JMA}} \geq 5.0$ and focal depths $D_p < 60 \text{ km}$. Excludes records from structures with first floor or basement.

• Records instrument corrected, because Japanese instruments substantially suppress high frequencies, considering accuracy of digitization for frequencies between $\frac{1}{3}$ and 12 Hz.

• Note that $M_{\text{JMA}}$ and $\Delta$ not necessarily most suitable parameters to represent magnitude and distance but only ones for all records in set.

• Note lack of near-field data for large magnitude earthquakes, approximately $\frac{3}{4}$ of records from $M_{\text{JMA}} < 7.0$.

• Use $30 \text{ km}$ in distance dependence term because focal depth of earthquakes with magnitudes between 7.5 and 8.0 are between 30 and 100 km so 30 is approximately half the fault length.

• Try equation: $\log X = f_1 + f_2 M + f_3 \log(\Delta + 30) + f_4 D_p + f_5 M \log(\Delta + 30) + f_6 M D_p + f_7 D_p \log(\Delta + 30) + f_8 M^2 + f_9 \{\log(\Delta + 30)\}^2 + f_{10} D_p^2$ where $f_i$ are coefficients to be found considering each soil category separately. Apply multiple regression analysis to 36 combinations of retained coefficients, $f_i$, and compute multiple correlation coefficient, $R$, and adjusted
multiple correlation coefficient, \( R^* \). Find that inclusion of more than three coefficients does not give significant increase in \( R^* \), and can lead to unrealistic results. Conclude due to insufficient data.

- Consider \( a \), \( b \) and \( c \) dependent and independent of soil type and examine correlation coefficient, \( R \), and adjusted correlation coefficient, \( R^* \). Find that \( c \) is not strongly dependent on soil type.

- Find match between normal distribution and histograms of residuals.

### 3.34 McCann Jr. & Echezwia (1984)

- Four ground motion models:

  \[
  \log_{10} Y = a + bM + d \log_{10} \left( \frac{R^2 + h^2}{2} \right) \quad \text{Model I}
  \]
  \[
  \log_{10} Y = a + bM + d \log_{10} \left[ R + c_1 \exp(c_2 M) \right] \quad \text{Model II}
  \]
  \[
  \log_{10} Y = a + bM + d \log_{10} \left[ \frac{c_1}{R^2} + \frac{c_2}{R} \right] + eR \quad \text{Model III}
  \]
  \[
  \log_{10} Y = a + bM + d \log_{10} \left[ R + 25 \right] \quad \text{Model IV}
  \]

  where \( Y \) is in \( g \), for model I \( a = -1.320 \), \( b = 0.262 \), \( d = -0.913 \), \( h = 3.852 \) and \( \sigma = 0.158 \), for model II \( a = -1.115 \), \( b = 0.341 \), \( c_1 = 1.000 \), \( c_2 = 0.333 \), \( d = -1.270 \) and \( \sigma = 0.154 \), for model III \( a = -2.000 \), \( b = 0.270 \), \( c_1 = 0.968 \), \( c_2 = 0.312 \), \( d = 0.160 \), \( e = -0.0105 \) and \( \sigma = 0.175 \) and for model IV \( a = 1.009 \), \( b = 0.222 \), \( d = -1.915 \) and \( \sigma = 0.174 \).

- Note 25 in Model IV should not be assumed but should be found by regression.

- Note tectonics and travel paths may be different between N. American and foreign records but consider additional information in near field more relevant.

- Selection procedure composite of Campbell (1981) and Joyner & Boore (1981). Exclude data from buildings with more than two storeys.

- Weighted least squares, based on distance, applied to control influence of well recorded events (such as San Fernando and Imperial Valley). Similar to Campbell (1981)

- Test assumption that logarithm of residuals are normally distributed. Cannot disprove assumption.

- Variability between models not more than \( \pm 20\% \) at distances \( > 10 \text{ km} \) but for distances \( < 1 \text{ km} \) up to \( \pm 50\% \).

### 3.35 Schenk (1984)

- Ground motion model is:

  \[
  \log A_{\text{mean}} = aM - b \log R + c
  \]

  where \( A_{\text{mean}} \) is in \( \text{cms}^{-2} \), \( a = 0.37 \), \( b = 1.58 \) and \( c = 2.35 \) (\( \sigma \) not given).
• Considers two site conditions but does not model:
  1. Solid
  2. Soft

• Fits equation by eye.

• States applicable approximately for: \( R_{\text{lower}} \leq R \leq R_{\text{upper}} \) where \( \log R_{\text{lower}} = 0.1M + 0.5 \) and \( \log R_{\text{upper}} = 0.35M + 0.4 \), due to distribution of data.

• Notes great variability in recorded ground motions up to \( R = 30 \text{ km} \) due to great influence of different site conditions.

• Notes for \( M \leq 4 \) source can be assumed spherical but for \( M > 4 \) elongated (extended) shape of focus should be taken into account.

3.36 Xu et al. (1984)

• Ground motion model is:
  \[
  \text{PGA} = a_1 \exp(a_2 M)(R + a_3)^{-a_4}
  \]
  where PGA is in g, \( a_1 = 0.1548, a_2 = 0.5442, a_3 = 8 \) and \( a_4 = 1.002 \) (\( \sigma \) not given).

• All records from aftershocks of 1975 Haicheng earthquake and from 1976 Tangshan earthquake and aftershocks.

• Most records from earthquakes with magnitude less than 5.8 and from distances < 30 km.

• Exclude records with PGA < 0.5 ms\(^{-2}\) to avoid too much contribution from far field.

• Due to small number of records simple regression technique justified.

• States valid for \( 4 \leq M \leq 6.5 \) and \( R \leq 100 \text{ km} \).

• Also use 158 records from western N. America to see whether significantly different than N. Chinese data. Derive equations using both western N. American and N. Chinese data and just western N. American data and find that predicted PGAs are similar, within uncertainty.

• Insufficient data to find physically realistic anelastic term.

3.37 Brillinger & Preisler (1985)

• Ground motion model is:
  \[
  \log A = a_1 + a_2 M - \log r + a_3 r
  \]
  where \( r^2 = d^2 + a_4^2 \)
  \[
  \text{where } A \text{ is in g, } a_1 = -1.229(0.196), a_2 = 0.277(0.034), a_3 = -0.00231(0.00062), a_4 = 6.650(2.612), \sigma_1 = 0.1223(0.0305) \text{ (inter-event) and } \sigma = 0.2284(0.0127) \text{ (intra-event), where numbers in brackets are the standard errors of the coefficients.}
3. Summary of published attenuation relations for peak ground acceleration

- Provide algorithm for random effects regression.
- Note that the functional form adopted in Brillinger & Preisler (1984) is strictly empirical and hence repeat analysis using functional form of Joyner & Boore (1981), which is based on physical reasoning.
- Note that need correlations between coefficients, which are provided, to attach uncertainties to estimated PGAs.

3.38 Kawashima et al. (1985)

- Use very similar data to Kawashima et al. (1984); do not use some records because missing due to recording and digitising processes. Use equation and method (although do not check all 36 combinations of forms of equation) used by Kawashima et al. (1984), see section 3.33.
- \( X(M, \Delta, Gc_i) \) is in gal. Coefficients are: \( c = -1.190 \) and for ground group 1 \( a = 117.0 \) and \( b = 0.268 \) and for ground group 2 \( a = 88.19 \) and \( b = 0.297 \) and for group ground 3 \( a = 13.49 \) and \( b = 0.402 \) with \( \sigma = 0.253 \).

3.39 Peng et al. (1985b)

- Ground motion model is:
  \[
  \log_{10} a = A + BM + C \log_{10} R + DR
  \]
  where \( a \) is in \( \text{cms}^{-2} \), for N.E. China \( A = -0.474, B = 0.613, C = -0.873 \) and \( D = -0.00206 \) (\( \sigma \) not given) and for S.W. China \( A = 0.437, B = 0.454, C = -0.739 \) and \( D = -0.00279 \) (\( \sigma \) not given).
- Consider two site conditions for NE records but do not model:
  1. Rock: 28 records.
  2. Soil: 45 records.
- Consider all records to be free-field.
- Note that Chinese surface-wave magnitude, \( M \), is different than \( M_s \) and may differ by 0.5 or more. Use \( m_b \) or \( M_s \) and find larger residuals.
- Most records from \( M \leq 5.8 \).
- Note isoseismals are not elongated for these earthquakes so use of another distance measure will not change results by much.
- Also derives equation for SW China \( (3.7 \leq M \leq 7.2, 6.0 \leq R \leq 428.0\text{ km} \) all but one record \( \leq 106.0\text{ km} \), 36 records from 23 earthquakes) and note difference between results from NE China although use less data.
• Note that some scatter may be due to radiation pattern.
• Note that data is from limited distance range so need more data to confirm results.

3.40 Peng et al. (1985a)

• Ground motion model is:

\[
\log A_m = a_1 + a_2 M - \log R - a_3 R
\]

\[
R = \sqrt{d^2 + h^2}
\]

where \(A_m\) is g, \(a_1 = -1.49\), \(a_2 = 0.31\), \(a_3 = -0.0248\), \(h = 9.4\) km and \(\sigma = 0.32\) (for horizontal components) and \(a_1 = -1.92\), \(a_2 = 0.29\), \(a_3 = -0.0146\), \(h = 6.7\) km and \(\sigma = 0.36\) (for vertical components).

• Data from experimental strong-motion array consisting of 12 Kinematics PDR-1 instruments deployed in the epicentral area of the \(M_s = 7.8\) Tangshan earthquake of 28th July 1976. Provide details of site geology at each station; most stations are on soil.

• Records from earthquakes recorded by only one station were excluded from analysis.

• Note that equations are preliminary and more refined equations await further studies of magnitudes and distances used in analysis.

• Note that high anelastic attenuation coefficient may be due to biases introduced by the distribution in magnitude-distance space and also because of errors in magnitude and distances used.

3.41 PML (1985)

• Ground motion model is:

\[
\ln(a) = C_1 + C_2 M + C_3 \ln[R + C_4 \exp(C_5 M)] + C_6 F
\]

where \(a\) is in g, \(C_1 = -0.855\), \(C_2 = 0.46\), \(C_3 = -1.27\), \(C_4 = 0.73\), \(C_5 = 0.35\), \(C_6 = 0.22\) and \(\sigma = 0.49\).

• Use data from Italy (47 records, 9 earthquakes), USA (128 records, 18 earthquakes), Greece (11 records, 8 earthquakes), Iran (2 records, 2 earthquakes), Yugoslavia (7 records, 2 earthquake), Nicaragua (1 record, 1 earthquake), New Zealand (3 records, 3 earthquakes), China (2 records, 2 earthquakes) and Canada (2 records, 1 earthquake).

• Develop for use in UK.

• Select earthquakes with \(M_s < 7\) and \(R \leq 40\) km.

• Focal depths < 40 km.
3. Summary of published attenuation relations for peak ground acceleration

- Use two source mechanism categories (40 records have no source mechanism given):
  
  $F = 0$  Strike-slip and normal, 85 records.
  
  $F = 1$  Thrust, 78 records.

- Also derive equation not considering source mechanism, i.e. $C_0 = 0$.

3.42 McCue (1986)

- Ground motion model is:
  
  $$A = a_1 (e^{a_2 M_L}) (d_h)^{a_3}$$

  where $A$ is in g, $a_1 = 0.00205$, $a_2 = 1.72$ and $a_3 = -1.58$ ($\sigma$ not given).


- Ground motion model is:
  
  $$\ln y = a + bM_s + cM_s^2 + d \ln(r + 1) + kr$$

  where $y$ is in gal, $a = 2.48456$, $b = 0.73377$, $c = -0.01509$, $d = -0.50558$, $k = -0.00935$ and $\sigma = 0.58082$.

- Records from deep soil sites (generally greater than 60 m in thickness).

- Data from shallow crustal earthquakes.

3.44 Krinitzsky et al. (1987) & Krinitzsky et al. (1988)

- Ground motion model is (for shallow earthquakes):
  
  $$\log A = a_1 + a_2 M - \log r + a_3 r$$

  where $A$ is in cms$^{-2}$, $a_1 = 1.23$ (for hard sites), $a_1 = 1.41$ (for soft sites), $a_2 = 0.385$ and $a_3 = -0.00255$ ($\sigma$ is not given).

- Ground motion model is (for subduction zone earthquakes):
  
  $$\log A = b_1 + b_2 M - \log \sqrt{r^2 + 100^2} + b_3 r$$

  where $A$ is in cms$^{-2}$, $b_1 = 2.08$ (for hard sites), $b_1 = 2.32$ (for soft sites), $b_2 = 0.35$ and $b_3 = -0.0025$ ($\sigma$ is not given).

- Use four site categories:
  
  1. Rock
  
  2. Stiff soil
3. Deep cohesionless soil (≥ 16 m)
4. Soft to medium stiff clay (≥ 16 m)

Categories 1 and 2 are combined into a hard (H) class and 3 and 4 are combined into a soft (S) class. This boundary established using field evidence at a shear-wave velocity of 400 ms$^{-1}$ and at an SPT N count of 60.

- Use data from ground floors and basements of small or low structures (under 3 stories) because believe that small structures have little effect on recorded ground motions.
- Separate earthquakes into shallow ($h \leq 19$ km) and subduction ($h \geq 20$ km) because noted that ground motions have different characteristics.
- Use epicentral distance for Japanese data because practical means of representing deep subduction earthquakes with distant and imprecise fault locations.
- Do not use rupture distance or distance to surface projection of rupture because believe unlikely that stress drop and peak motions will occur with equal strength along the fault length and also because for most records fault locations are not reliably determinable.
- Note that there is a paucity of data but believe that the few high peak values observed (e.g. Pacoima Dam and Morgan Hill) cannot be dismissed without the possibility that interpretations will be affected dangerously.
- For subduction equations, use records from Japanese SMAC instruments that have not been instrument corrected, even though SMAC instruments show reduced sensitivity above 10 Hz, because ground motions > 10 Hz are not significant in subduction earthquakes. Do not use records from SMAC instruments for shallow earthquakes because high frequency motions may be significant.
- Examine differences between ground motions in extensional (strike-slip and normal faulting) and compressional (reverse) regimes for shallow earthquakes but do not model. Find that the extensional ground motions seem to be higher than compressional motions, which suggest is because rupture propagation comes closer to ground surface in extensional faults than in compressional faults.
- Group records into 1 $M$ unit intervals and plot ground motions against distance. When data is numerous enough the data points are encompassed in boxes (either one, two or three) that have a range equal to the distribution of data. The positions of the calculated values within the boxes were used as guides for shaping appropriate curves. Initially curves developed for $M = 6.5$ were there is most data and then these were extended to smaller and larger magnitudes.

3.45 Sabetta & Pugliese (1987)

- Ground motion model is:

$$\log y = a + bM - \log(R^2 + h^2)^{1/2} + eS$$
where $y$ is in g and for distance to surface projection of fault $a = -1.562$, $b = 0.306$, $e = 0.169$, $h = 5.8$ and $\sigma = 0.173$.

- Use two site categories:
  
  $S = 0$ Stiff and deep soil: limestone, sandstone, siltstone, marl, shale and conglomerates ($V_s > 800\text{ ms}^{-1}$) or depth of soil, $H$, $> 20\text{ m}$, 74 records.

  $S = 1$ Shallow soil: depth of soil, $H$, $5 \leq H \leq 20\text{ m}$, 21 records.

- Select records which satisfy these criteria:
  
  1. Reliable identification of the triggering earthquake.
  2. Magnitude greater than 4.5 recorded by at least two stations.
  3. Epicentres determined with accuracy of 5 km or less.
  4. Magnitudes accurate to within 0.3 units.
  5. Accelerograms from free-field. Most are from small electric transformer cabins, 4 from one- or two-storey buildings with basements and 5 from near abutments of dams.

- Depths between 5.0 and 16.0 km with mean 8.5 km.

- Focal mechanisms are: normal and oblique (7 earthquakes, 48 records), thrust (9 earthquakes, 43 records) and strike-slip (1 earthquake, 4 records).

- Notes lack of records at short distances from large earthquakes.

- Records baseline-, instrument-corrected and filtered with cutoff frequencies determined by visual inspection in order to maximise signal to noise ratio within band. Cutoff frequencies ranged from 0.2 to 0.4 Hz and from 25 to 35 Hz. This correction routine thought to provide reliable estimates of PGA so uncorrected PGA do not need to be used.

- For well separated multiple shocks, to which magnitude and focal parameters refer, use only first shock.

- Magnitude scale assures a linear relationship between logarithm of PGA and magnitude and avoids saturation effects of $M_L$.

- Distance to surface projection of fault rupture thought to be a more physically consistent definition of distance for earthquakes having extensive rupture zones and is easier to predict for future earthquakes. Also reduces correlation between magnitude and distance.

- Use Exploratory Data Analysis using the ACE procedure to find transformation functions of distance, magnitude and PGA.

- Include anelastic attenuation term but it is positive and not significant.

- Include magnitude dependent $h$ equal to $h_1 \exp(h_2 M)$ but find $h_2$ not significantly different than zero. Note distribution of data makes test not definitive.
• Find geometric attenuation coefficient, \( c \), is close to \(-1\) and highly correlated with \( h \) so constrain to \(-1\) so less coefficients to estimate.

• Consider deep soil sites as separate category but find difference between them and stiff sites is not significant.

• Also use two-stage method but coefficients and variance did not change significantly with respect to those obtained using one-stage method, due to uniform distribution of recordings among earthquakes.

• Find no significant trends in residuals, at \( 99\% \) level and also no support for magnitude dependent shape for attenuation curves.

• Exclude records from different seismotectonic and geological regions and repeat analysis. Find that predicted PGA are similar.

• Plot residuals from records at distances \( 15 \text{ km} \) or less against magnitude; find no support for magnitude dependence of residuals.

• Note some records are affected by strong azimuthal effects, but do not model them because they require more coefficients to be estimated, direction of azimuthal effect different from region to region and azimuthal effects have not been used in other relationships.


• Ground motion model is:

\[
\ln y = a + bM + c_1(8.5 - M)^{c_2} + d \ln[r + h_1 \exp(h_2M)]
\]

where \( y \) is in g. For strike-slip earthquakes: \( b = 1.1, c_1 = 0, c_2 = 2.5 \), for PGA at soil sites \( a = -2.611 \) and \( d = -1.75 \), for \( M < 6.5 \), \( h_1 = 0.8217 \), \( h_2 = 0.4814 \) and for \( M \geq 6.5 \), \( h_1 = 0.3157 \) and \( h_2 = 0.6286 \), for PGA at rock sites \( a = -1.406 \) and \( d = -2.05 \), for \( M < 6.5 \), \( h_1 = 1.353 \) and \( h_2 = 0.406 \) and for \( M \geq 6.5 \), \( h_1 = 0.579 \) and \( h_2 = 0.537 \). For reverse-slip increase predicted values by 20\%. For \( M < 6.5 \) \( \sigma = 1.26 - 0.14M \) and for \( M \geq 6.5 \) \( \sigma = 0.35 \).

• Uses two site categories:
  1. Soil
  2. Rock

• Use two source mechanism categories:
  1. Strike-slip
  2. Reverse-slip

• Supplement data with significant recordings of earthquakes with focal depths < 20 km from other parts of world.

• Different equations for \( M < 6.5 \) and \( M \geq 6.5 \).
3. Summary of published attenuation relations for peak ground acceleration

3.47 Singh et al. (1987)

- Ground motion model is:
  \[ \log y_{\text{max}} = \alpha M_s - c \log R + \beta \]
  where \( y_{\text{max}} \) is in \( \text{cms}^{-2} \), \( \alpha = 0.429 \), \( c = 2.976 \), \( \beta = 5.396 \) and \( \sigma = 0.15 \).
  More complicated functional form unwarranted due to limited distance range.
- Depths between 15 and 20 km.
- Only use data from a single firm site (Ciudad Universitaria), on a surface layer of lava flow or volcanic tuff.
- Only records from coastal earthquakes.
- Residuals plotted against distance, no trends seen.
- Give amplification factor for lake bed sites (25 to 80 m deposit of highly compressible, high water content clay underlain by resistant sands), but note based on only a few sites so not likely to be representative of entire lake bed.

3.48 Algermissen et al. (1988)

- Ground motion model is:
  \[ \ln(A) = a_1 + a_2 M_s + a_3 \ln(R) + a_4 R \]
  where \( A \) is in g, \( a_1 = -1.987 \), \( a_2 = 0.604 \), \( a_3 = -0.9082 \), \( a_4 = -0.00385 \) and \( \sigma = 0.68 \).


- Ground motion model is:
  \[ \log A = C_m M + C_h H - C_d \log(R + A \exp(BM)) + C_o \]
  where \( A \) is in \( \text{cms}^{-2} \), \( A \) and \( B \) so PGA becomes independent of magnitude at fault rupture, \( H \) is depth of point on fault plane when \( R \) becomes closest distance to fault plane, \( C_m = 0.627 \), \( C_h = 0.00671 \), \( C_d = 2.212 \), \( C_o = 1.711 \) and \( \sigma = 0.211 \).
- Focal depths < 100 km.
- Convert records from sites with \( V_s < 300 \text{ms}^{-1} \) into records from sites with \( V_s > 300 \text{ms}^{-1} \) using 1-D wave propagation theory.
- Introduce term \( C_h H \) because it raises multiple correlation coefficient for PGA.
- Note equations apply for site where \( 300 \leq V_s \leq 600 \text{ms}^{-1} \).

- Ground motion model is:
  \[
  \ln y = a + bM + d \ln[r + h_1 \exp(h_2M)] + s
  \]
  where \( s = e_1K_1 + e_2K_2 + e_3K_3 + e_4K_4 + e_5K_5 + e_6(K_4 + K_5) \tanh(e_7r) \)

  where \( y \) is in \( \text{g} \), \( a = -2.817 \), \( b = 0.702 \), \( d = -1.20 \), \( h_1 = 0.0921 \), \( h_2 = 0.584 \), \( e_1 = 0.32 \), \( e_2 = 0.52 \), \( e_3 = 0.41 \), \( e_4 = -0.85 \), \( e_5 = -1.14 \), \( e_6 = 0.87 \), \( e_7 = 0.068 \) and \( \sigma = 0.30 \).

- Uses two site categories:
  \( K_3 = 1 \) Soils \( \leq 10 \text{m} \) deep.
  \( K_3 = 0 \) Other.

- Uses three embedment categories:
  \( K_4 = 1, K_5 = 0 \) Basements of buildings 3–9 storeys.
  \( K_5 = 1, K_4 = 0 \) Basements of buildings \( \geq 10 \text{storeys} \).
  \( K_4 = 0, K_5 = 0 \) Other.

- Selects data using these criteria:
  1. Largest horizontal component of peak acceleration was \( \geq 0.02 \text{g} \) [\( \geq 0.2 \text{ms}^{-2} \)].
  2. Accelerograph triggered early enough to record strongest phase of shaking.
  3. Magnitude of earthquake was \( \geq 5.0 \).
  4. Closest distance to seismogenic rupture was \( < 30 \text{ or } < 50 \text{km} \), depending on whether magnitude of earthquake was \( < 6.25 \text{ or } > 6.25 \).
  5. Shallowest extent of seismogenic rupture was \( \leq 25 \text{km} \).
  6. Recording site located on unconsolidated deposits.

- Excludes records from abutments or toes of dams.

- Derives two equations: unconstrained (coefficients given above) and constrained which includes an anelastic decay term \( kr \) which allows equation to be used for predictions outside near-source zone (assumes \( k = -0.0059 \) for regression, a value appropriate for region of interest should be chosen).

- Uses two source mechanism categories:
  \( K_1 = 0 \) Strike-slip.
  \( K_1 = 1 \) Reverse.

- Uses two directivity categories:
  \( K_2 = 1 \) Rupture toward site.
  \( K_2 = 0 \) Other.
3. Summary of published attenuation relations for peak ground acceleration

3.51 Fukushima et al. (1988) & Fukushima & Tanaka (1990)

- Ground motion model is:
  \[
  \log A = aM - \log(R + c10^{aM}) - bR + d
  \]
  where \( A \) is in \( \text{cm}^2/\text{s} \), \( a = 0.41 \), \( b = 0.0034 \), \( c = 0.032 \), \( d = 1.30 \) and \( \sigma = 0.21 \).

- Use four site categories for some Japanese stations (302 Japanese records not classified):
  1. Rock: 41 records
  2. Hard: ground above Tertiary period or thickness of diluvial deposit above bedrock \(< 10\, \text{m} \), 44 records.
  3. Medium: thickness of diluvial deposit above bedrock \( > 10\, \text{m} \), or thickness of alluvial deposit above bedrock \( < 10\, \text{m} \), or thickness of alluvial deposit \( < 25\, \text{m} \) and thickness of soft deposit is \( < 5\, \text{m} \), 66 records.
  4. Soft soil: other soft ground such as reclaimed land, 33 records.

- Use 1100 mean PGA values from 43 Japanese earthquakes (\( 6.0 \leq M_{\text{JMA}} \leq 7.9 \), focal depths \( \leq 30\, \text{km} \)) recorded at many stations to investigate one and two-stage methods. Fits \( \log A = c - b \log X \) (where \( X \) is hypocentral distance) for each earthquake and computes mean of \( b \), \( \bar{b} \). Also fits \( \log A = aM - b^* \log X + c \) using one-stage method. Find that \( \bar{b} > b^* \) and shows that this is because magnitude and distance are strongly correlated (0.53) in data set. Find two-stage method of Joyner & Boore (1981) very effective to overcome this correlation and use it to find similar distance coefficient to \( \bar{b} \). Find similar effect of correlation on distance coefficient for two other models:
  \[
  \log A = aM - b \log(\Delta + 30) + c \quad \text{and} \quad \log A = aM - \log X - bX + c, \quad \text{where} \ \Delta \ \text{is epicentral distance.}
  \]

- Japanese data selection criteria: focal depth \( < 30\, \text{km} \), \( M_{\text{JMA}} > 5.0 \) and predicted PGA \( \geq 0.1\, \text{ms}^{-2} \). US data selection criteria: \( d_r \leq 50\, \text{km} \), use data from Campbell (1981).

- Because \( a \) affects distance and magnitude dependence, which are calculated during first and second steps respectively use an iterative technique to find coefficients. Allow different magnitude scaling for US and Japanese data.

- For Japanese data apply station corrections before last step in iteration to convert PGAs from different soil conditions to standard soil condition using residuals from analysis.

- Two simple numerical experiments performed. Firstly a two sets of artificial acceleration data was generated using random numbers based on attenuation relations, one with high distance decay and which contains data for short distance and one with lower distance decay, higher constant and no short distance data. Find that the overall equation from regression analysis has a smaller distance decay coefficient than individual coefficients for each line. Secondly find the same result for the magnitude dependent coefficient based on similar artificial data.
3. Summary of published attenuation relations for peak ground acceleration

- Exclude Japanese data observed at long distances where average acceleration level was predicted (by using an attenuation relation derived for the Japanese data) to be less than the trigger level (assume to be about $0.05 \text{ms}^{-2}$) plus one standard deviation (assume to be 0.3), i.e. $0.1 \text{ms}^{-2}$, to avoid biasing results and giving a lower attenuation rate.

- Use the Japanese data and same functional form and method of Joyner & Boore (1981) to find an attenuation relation; find the anelastic coefficient is similar so conclude attenuation rate for Japan is almost equal to W. USA.

- Find difference in constant, $d$, between Japanese and W. USA PGA values.

- Plot residuals against distance and magnitude and find no bias or singularity.

3.52 Gaull (1988)

- Ground motion model is:

$$
\log \text{PGA} = \frac{(a_1 \log R + a_2)/a_3(M_L - a_4) - a_5 \log R - a_6 R + a_7}{a_3}
$$

where PGA is in $\text{ms}^{-2}$, $a_1 = 5$, $a_2 = 3$, $a_3 = 20$, $a_4 = 6$, $a_5 = 0.77$, $a_6 = 0.0045$ and $a_7 = 1.2$ ($\sigma$ not given).

- Considers three site categories but does not model:
  1. Rock: 6 records
  2. Alluvium: 5 records
  3. Average site: 10 records

- Most records from earthquakes with magnitudes about 3 and most from distances below about 20 km.

- Band pass filter records to get PGA associated with waves with periods between 0.1 and 0.5 s because high frequency PGA from uncorrected records not of engineering significance.

- Adds 4 near source ($5 \leq R \leq 10 \text{km}$) records from US, Indian and New Zealand earthquakes with magnitudes between 6.3 and 6.7 to supplement high magnitude range.

- Add some PGA points estimated from intensities associated with 14/10/1968 $M_L = 6.9$ Meckering earthquake in Western Australia.

- Plot 6 records from one well recorded event with $M_L = 4.5$ and fit an attenuation curve of form $\log \text{PGA} = b_1 - b_2 \log R - b_3 R$ by eye. Plot PGA of all records with $2 \leq R \leq 20 \text{km}$ against magnitude, fit an equation by eye. Use these two curves to normalise all PGA values to $M_L = 4.5$ and $R = 5 \text{km}$ from which estimates attenuation relation.
3.53 Joyner & Boore (1988)

- Use same data and very similar method to Joyner & Boore (1981), see Section 3.27, and find: 
  \[ \beta = 0.23, \quad b = -0.0027, \quad h = 8.0 \quad \text{and} \quad \sigma = 0.28, \]
  for randomly oriented component \( \alpha = 0.43 \)
  and for larger component \( \alpha = 0.49 \).

3.54 McCue et al. (1988)

- Ground motion model is:
  \[ A = a(\exp(bM)) \left( \frac{R}{R_0} + c \right)^{-d} \]
  where \( A \) is in g, \( \ln a = -5.75, \quad b = 1.72, \quad c = 0, \quad d = 1.69 \) and \( R_0 = 1 \) (\( \sigma \) not given).
- Few records from free-field, most are in dams or special structures.
- Because only 62 records, set \( R_0 = 1 \) and \( c = 0 \).
- Most records from earthquakes with \( M_L \) between 1.5 and 2.0.
- Maximum PGA in set 3.05 ms\(^{-2}\).
- Nonuniform distribution of focal distances. One quarter of records from same hypocentral distance. Therefore plot PGA of these records against magnitude (1.2 \( \lesssim M_L \lesssim 4.3 \) most less than 2.1) to find \( b \). Then plot \( bM - \ln A \) against \( \ln(R/R_0) \) for all records to find \( a \) and \( d \).
- Notes limited data.

3.55 Petrovski & Marcellini (1988)

- Ground motion model is:
  \[ \ln(a) = b'_1 + b_2M + b_3 \ln(R + c) \]
  where \( a \) is in cm/s\(^2\), \( b'_1 = 6.4830, \quad b_2 = 0.5438, \quad b_3 = -1.3330, \quad c = 20 \text{km} \) and \( \sigma = 0.6718 \) (for horizontal PGA) and \( b'_1 = 5.6440, b_2 = 0.5889, b_3 = -1.3290, c = 20 \text{km} \) and \( \sigma = 0.6690 \) (for vertical PGA) (also give coefficients for other choices of \( c \)).
- Data from 'moderate' soil conditions.
- Data mainly from SMA-1s but 17 from RFT-250s.
- Data from northern Greece (5 records, 4 stations, 3 earthquakes), northern Italy (45 records, 18 stations, 20 earthquakes) and former Yugoslavia (70 records, 42 stations, 23 earthquakes).
- Data from free-field or in basements of structures.
- Select records from earthquakes with \( 3 \leq M \leq 7 \). Most earthquakes with \( M \leq 5.5 \). 4 earthquakes (4 records) with \( M \leq 3.5 \), 20 (27 records) with \( 3.5 < M \leq 4.5 \), 13 (25 records) with \( 4.5 < M \leq 5.5 \), 8 (50 records) with \( 5.5 < M \leq 6.5 \) and 1 (14 records) with \( M > 6.5 \).
- Select records from earthquakes with \( h \leq 40 \text{ km} \). Most earthquakes with \( h \leq 10 \text{ km} \). 6 earthquakes with \( h \leq 5 \text{ km} \), 30 with \( 5 < h \leq 10 \text{ km} \), 5 with \( 10 < h \leq 20 \text{ km} \), 4 with \( 20 < h \leq 30 \text{ km} \) and 1 with \( h > 30 \).
- Select records that satisfied predetermined processing criteria so that their amplitude would be such as to give negligible errors after processing.
- Select records to avoid concentration of records w.r.t. certain sites, magnitudes, hypocentral distances or earthquakes. Most well-recorded earthquakes is 15/4/1979 Montenegro earthquake with 14 records.
- Try values of \( c \) between 0 and 40 km. Find standard deviation does not vary much for different choices.
- Test assumption of the log-normal probability distribution of data using graph in a coordinate system for log-normal distribution of probability, by \( \chi^2 \) test and by the Kolmogorov-Smirnov test (not shown). Find assumption is acceptable.

3.56 Tong & Katayama (1988)

- Ground motion model is:
  \[
  \log \bar{A} = \alpha M - \beta \log(\Delta + 10) + \gamma T + \delta
  \]
  where \( \bar{A} \) is in \( \text{gal} \), \( T \) is predominant period of site, \( \alpha = 0.509 \), \( \beta = 2.32 \), \( \gamma = 0.039 \) and \( \delta = 2.33 \) (\( \sigma \) not given).

- Correlation coefficient between magnitude and distance is 0.84, so magnitude and distance cannot be considered independent, so attenuation rate, \( \beta \), is difficult to find.
- First step fit \( \log \bar{A} = -\beta_i \log(\Delta + 10) + \delta_i \) to each earthquake. Define reliability parameter, \( \psi_i = N_i R_i^2 \), where \( N_i \) is degrees of freedom for \( i \) earthquake and \( R_i \) is correlation coefficient. Plot \( \psi_i \) against \( \beta_i \) and find attenuation rate scattered, between \(-6 \) and \( 9 \), for \( \psi_i < 1 \) (Group B) and for \( \psi_i > 1 \) attenuation rate converges (Group U).
- Group B includes earthquakes with focal depths \( > 388 \text{ km} \), earthquakes with small magnitudes and records from distances \( \approx 100 \text{ km} \), earthquakes with records from great distances where spread of distances is small, earthquakes recorded by only 3 stations and earthquakes with abnormal records. Exclude these records.
- Apply multiple regression on Group U to find \( \alpha \), \( \beta \), \( \gamma \) and \( \delta \) simultaneously. Also fix \( \beta = \sum \psi_i \beta_i / \sum \psi_i \) and find \( \alpha \), \( \gamma \) and \( \delta \). Find different coefficients but similar correlation coefficient. Conclude due to strong correlation between \( M \) and \( \Delta \) so many regression planes exist with same correlation coefficient.
- Perform Principal Component Analysis (PCA) on \( \log \bar{A} \), \( M \), \( \log(\Delta + 10) \), \( T \) and \( \log \bar{A}/A \) and find that equation found by fixing \( \beta \) is not affected by ill-effect of correlation between \( M \) and \( \Delta \).
• Omit $T$ from regression and find little effect in estimation.

3.57 Yamabe & Kanai (1988)

• Ground motion model is:

$$\log_{10} a = \beta - \nu \log_{10} x$$

where $\beta = b_1 + b_2 M$

and: $\nu = c_1 + c_2 M$

where $a$ is in gal, $b_1 = -3.64$, $b_2 = 1.29$, $c_1 = -0.99$ and $c_2 = 0.38$ (σ not given).

• Focal depths between 0 and 130 km.

• Regress recorded PGA of each earthquake, $i$, on $\log_{10} a = \beta_i - \nu_i \log_{10} x$, to find $\beta_i$ and $\nu_i$.

Then find $b_1$ and $b_2$ from $\beta = b_1 + b_2 M$ and $c_1$ and $c_2$ from $\nu = c_1 + c_2 M$.

• Also consider $\nu = d_1 \beta$.

• Find $\beta$ and $\nu$ from 6 earthquakes (magnitudes between 5.4 and 6.1) from Tokyo-Yokohama area are much higher than for other earthquakes, so ignore them. Conclude that this is due to effect of buildings on ground motion.

3.58 Youngs et al. (1988)

• Ground motion model is:

$$\ln(a_{\text{max}}) = C_1 + C_2 M_w - C_3 \ln[R + C_4 \exp(C_5 M_w)] + BZ_t$$

where $a_{\text{max}}$ is in g, $C_1 = 19.16$, $C_2 = 1.045$, $C_3 = -4.738$, $C_4 = 205.5$, $C_5 = 0.0968$, $B = 0.54$ and $\sigma = 1.55 - 0.125 M_w$.

• Use only rock records to derive equation but use some (389 records) for other parts of study. Classification using published shear-wave velocities for some sites.

• Exclude data from very soft lake deposits such as those in Mexico City because may represent site with special amplification characteristics.

• Data from subduction zones of Alaska, Chile, Peru, Japan, Mexico and Solomon Islands.

• Use two basic types of earthquake:

$Z_t = 0$ Interface earthquakes: low angle, thrust faulting shocks occurring on plate interfaces.

$Z_t = 1$ Intraslab earthquakes: high angle, predominately normal faulting shocks occurring within down going plate.
Classification by focal mechanisms or focal depths (consider earthquakes with depths > 50 km to be intraslab). Note that possible misclassification of some intraslab shocks as interface events because intraslab earthquakes do occur at depths < 50 km.

- Plots PGA from different magnitude earthquakes against distance; find near-field distance saturation.
- Originally include anelastic decay term $-C_6R$ but $C_6$ was negative (and hence nonphysical) so remove.
- Plot residuals from original PGA equation (using rock and soil data) against $M_w$ and $R$; find no trend with distance but reduction in variance with increasing $M_w$. Assume standard deviation is a linear function of $M_w$ and find coefficients using combined rock and soil data (because differences in variance estimation from rock and soil are not significant).
- Use derived equation connecting standard deviation and $M_w$ for weighted (weights inversely proportional to variance defined by equation) nonlinear regression in all analyses.
- Plot residuals from original PGA equation; find that hypothesis that coefficients of equations for interface and intraslab earthquakes are the same can be rejected (using likelihood ratio test for nonlinear regression models) at 0.05 percentile level for both soil and rock. Try including a term proportional to depth of rupture into equation (because intraslab deeper than interface events) but find no significant reduction in standard error. Introduce $BZ_t$ term into equation; find $B$ is significant at 0.05 percentile level. Try including rupture type dependence into other coefficients but produces no further decrease in variance so reject.
- Use only data from sites with multiple recordings of both interface and intraslab earthquakes and include dummy variables, one for each site, to remove differences due to systematic site effects. Fix $C_1$ to $C_5$ to values from entire set and find individual site terms and $B$; find $B$ is very similar to that from unconstrained regression.
- Examine residuals for evidence of systematic differences between ground motion from different subduction zones; find no statistically significant differences in PGA among different subduction zones.
- Use geometric mean of two horizontal components to remove effect of component-to-component correlations that affect validity of statistical tests assuming individual components of motion represent independent measurements of ground motion. Results indicate no significant difference between estimates of variance about median relationships obtained using geometric mean and using both components as independent data points.
- Extend to $M_w > 8$ using finite difference simulations of faulting and wave propagation modelled using ray theory. Method and results not reported here.
3. Summary of published attenuation relations for peak ground acceleration


- Ground motion model is:
  \[ \log_{10} a = \alpha + \beta M - \bar{\epsilon} \log_{10} [r + \exp(h_2 M)] + F \phi + Ebr \]
  
  where \( F = 1 \) for reverse or reverse oblique events and 0 otherwise and \( E = 1 \) for interplate events and 0 otherwise, \( \alpha \) is in \( g \), for horizontal PGA \( \alpha = -0.62, \beta = 0.177, \bar{\epsilon} = 0.982, h_2 = 0.284, \phi = 0.132, b = -0.0008 \) and \( \sigma = 0.277 \) and for vertical PGA \( \alpha = -1.15, \beta = 0.245, \bar{\epsilon} = 1.096, h_2 = 0.256, \phi = 0.096, b = -0.0011 \) and \( \sigma = 0.296 \).

- Consider three site classifications, based on Joyner & Boore (1981):

  Use to examine possible dependence in residuals not in regression because of many unclassified stations.

- Data based on Campbell (1981).

- Fault mechanisms are: strike-slip (256 records from 28 earthquakes), normal (14 records from 7 earthquakes), normal oblique (42 records from 12 earthquakes), reverse (224 records from 21 earthquakes) and reverse oblique (49 records from 8 earthquakes). Grouped into normal-strike-slip and reverse events. Weakly correlated with magnitude (0.23), distance (0.18) and tectonic environment (0.03).

- Tectonic environments are: interplate (555 records from 66 earthquakes) and intraplate (30 records from 10 earthquakes) measurements. Weakly correlated with magnitude (−0.26), distance (−0.17) and fault mechanism (0.03).

- Depths less than 25 km.

- Use array average (37 instruments are in array) from 10 earthquakes recorded at SMART 1 array in Taiwan.

- Most records from distances less than 100 km and magnitude distribution is reasonably uniform but correlation between magnitude and distance of 0.52.

- Try two-stage technique and model (modified to include fault mechanism and tectonic environment parameters) of Joyner & Boore (1981), find inadmissible positive anelastic coefficient, so do not use it.

- Use a hybrid regression technique based on Joyner & Boore (1981) and Campbell (1981). A method to cope with highly correlated magnitude and distance is required. First step: fit data to \( f_2(r) = \bar{\epsilon} \log_{10} (r + h) \) and have separate constants for each earthquake (like in two-stage method of Joyner & Boore (1981)). Next holding \( \bar{\epsilon} \) constant find \( \alpha, \beta, b \) and \( h_2 \) from fitting \( h = \exp(h_2 M) \). Weighting based on Campbell (1981) is used.
• Form of $h$ chosen using nonparametric function, $H(M)$, which partitions earthquakes into 0.5 unit bins. Plot $H(M)$ against magnitude. Find that $H(M) = h_1 \exp(h_2 M)$ is controlled by Mexico (19/9/1985) earthquake and $h_1$ and $h_2$ are highly correlated, 0.99, although does given lower total variance. Choose $H(M) = \exp(h_2 M)$ because Mexico earthquake does not control fit and all parameters are well-determined, magnitude dependent $h$ significant at 90%.

• Try removing records from single-recorded earthquakes and from shallow or soft soil but effect on predictions and variance small ($< 10\%$).

• Plot weighted residuals within 10 km no significant, at 90%, trends are present.

• Find no significant effects on vertical PGA due to site classification.

3.60 Campbell (1989)

• Ground motion model is:

$$\ln \text{PHA} = a + bM_L - 1.0 \ln[R + c_1]$$

where PHA is in g, $a = -2.501$, $b = 0.623$, $c_1 = 7.28$ and $\sigma = 0.506$.

• Selects records from deep soil ($> 10 \text{ m}$). Excludes data from shallow soil ($\leq 10 \text{ m}$) and rock sites and those in basements of buildings or associated with large structures, such as dams and buildings taller than two storeys. Selects records with epicentral distances $\leq 20 \text{ km}$ for $M_L < 4.75$ and distances $\leq 30 \text{ km}$ for $M_L \geq 4.75$ to minimize regional differences in anelastic attenuation and potential biases associated with nontriggering instruments and unreported PGAs.

• Focal depths, $H$, between 1.8 and 24.3 km with mean of 8.5 km.

• PGAs scaled from either actual or uncorrected accelerograms in order to avoid potential bias due to correction.

• Uses weighted nonlinear least squares technique of Campbell (1981).

• Tries two other forms of equation: $\ln \text{PHA} = a + bM_L - 1.0 \ln[R + c_1] + c_1 H$ and $\ln \text{PHA} = a + bM_L - 1.0 \ln[R + c_1] + c_2 \ln H$ for epicentral and hypocentral distance. Allows saturation of PGA for short distances but finds nonsignificant coefficients, at 90%. Also tries distance decay coefficient other than $-1.0$ but finds instability in analysis.

• Examines normalised weighted residuals against focal depth, $M_L$ and distance. Finds that although residuals seem to be dependent on focal depth there are probably errors in focal depth estimation for deep earthquakes in the study so the dependence may not be real. Finds residuals not dependent on magnitude or distance.

• Uses 171 records ($0.9 \leq R \leq 28.1 \text{ km}$) from 75 earthquakes ($2.5 \leq M_L \leq 5.0$, $0.7 \leq H \leq 24.3 \text{ km}$) excluded from original analysis because they were on shallow soil, rock and/or not
free-field, to examine importance of site geology and building size. Considers difference between PGA from records grouped according to instrument location, building size, embedment, and site geology and the predicted PGA using the attenuation equation to find site factors, $S$. Groups with nonsignificant, at 90%, values of $S$ are grouped together. Finds two categories: embedded alluvial sites from all building sizes (38 records) and shallow-soil (depth of soil $\leq 10$ m) sites (35 records) to have statistically significant site factors.

- Performs regression analysis on all records (irrespective of site geology or building size) from Oroville (172 records from 32 earthquakes) and Imperial Valley (71 records from 42 earthquakes) to find individual sites that have significant influence on prediction of PGA (by using individual site coefficients for each station). Finds equations predict similar PGA to those predicted by original equation. Finds significant differences between PGA recorded at different stations in the two regions some related to surface geology but for some finds no reason.

- Uses 27 records ($0.2 \leq R \leq 25.0$ km) from 19 earthquakes ($2.5 \leq M_{b_{LG}} \leq 4.8$, $0.1 \leq H \leq 9$ km) from E. N. America to examine whether they are significantly different than those from W. N. America. Finds residuals significantly, at 99% level, higher than zero and concludes that it is mainly due to site effects because most are on shallow soils or other site factors influence ground motion. Correcting the recorded PGAs using site factors the difference in PGA between E. N. America and W. N. America is no longer significant although notes may not hold for all of E. N. America.

3.61 Alfaro et al. (1990)

- Ground motion model for near field is:
  \[
  \log(A) = a_1 + a_2 M_s - \log(r^2 + a_3^2)^{1/2}
  \]
  where $A$ is in g, $a_1 = -1.116$, $a_2 = 0.312$, $a_3 = 7.9$ and $\sigma = 0.21$.

Ground motion model for far field is:
\[
\log(A) = b_1 + b_2 M_s + b_3 \log(r^2 + b_4^2)^{1/2}
\]
where $A$ is in g, $b_1 = -1.638$, $b_2 = 0.438$, $b_3 = -1.181$, $b_4 = 70.0$ and $\sigma = 0.21$.

- Separate crustal and subduction data because of differences in travel path and stress conditions:
  1. Near field
  2. Far field, 20 records from San Salvador, 20 earthquakes, $4.2 \leq M_s \leq 7.2$, depths between 36 and 94 km, $31 \leq r \leq 298$ km.

3.62 Ambraseys (1990)

- Ground motion model is:
  \[
  \log y = \alpha + \beta M_w - \log r + br
  \]
  where $r = (d^2 + h^2)^{1/2}$
3. Summary of published attenuation relations for peak ground acceleration

where $y$ is in $g$, $\alpha = -1.101$, $\beta = 0.2615$, $b = -0.00255$, $h = 7.2$ and $\sigma = 0.25$.

- Uses data and method of Joyner & Boore (1981) but re-evaluates $M_w$ for all earthquakes.
  Finds some large changes, e.g. Santa Barbara changes from $M_w = 5.1$ to $M_w = 5.85$.
  Uses $M_L$ for 2 earthquakes ($M_L = 5.2, 6.2$).
- Find effect of uncertainty in $M_w$ causes less than 10% change in $\sigma$.
- Also calculates equation using $M_s$ instead of $M_w$.
- Finds assumption $M_s = M_w$ introduces bias, particularly for small magnitude shocks, on unsafe side, and this can be significant in cases where there is a preponderance of small earthquakes in set.

3.63 Campbell (1990)

- Ground motion model is:
  \[
  \ln(Y) = a + bM + d\ln[R + c_1 \exp(c_2M)] + eF + f_1 \tanh[f_2(M + f_3)] + g_1 \tanh(g_2D) + h_1K_1 + h_2K_2 + h_3K_3
  \]
  where $Y$ is in $g$, $a = -2.245$, $b = 1.09$, $c_1 = 0.361$, $c_2 = 0.576$, $d = -1.89$, $e = 0.218$,
  $f_1 = 0$, $f_2 = 0$, $f_3 = 0$, $g_1 = 0$, $g_2 = 0$, $h_1 = -0.137$, $h_2 = -0.403$ and $h_3 = 0$.
  $\sigma = 0.517$ for $M \leq 6.1$ and $\sigma = 0.387$ for $M \geq 6.2$.
  Also given is $\sigma = 0.450$ for $M \geq 4.7$.
- Records from firm soil and soft rock sites. Characterises site conditions by depth to basement rock (sediment depth) in km, $D$.
- Records from different size buildings. $K_1 = 1$ for embedded buildings 3–11 storeys,
  $K_2 = 1$ for embedded buildings with >11 storeys and $K_3 = 1$ for non-embedded buildings >2 storeys in height.
  $K_1 = K_2 = K_3 = 0$ otherwise.
- Uses two fault mechanisms:
  
  $F = 0$ Strike-slip
  $F = 1$ Reverse

3.64 Dahle et al. (1990b) & Dahle et al. (1990a)

- Ground motion model is:
  \[
  \ln A = c_1 + c_2M + c_4R + \ln G(R, R_0)
  \]
  where $G(R, R_0) = R^{-1}$ for $R \leq R_0$
  and: $G(R, R_0) = R_0^{-1} \left( \frac{R_0}{R} \right)^{5/6}$ for $R > R_0$
  where $A$ is in $ms^{-2}$, $c_1 = -1.471$, $c_2 = 0.849$, $c_4 = -0.00418$ and $\sigma = 0.83$. 
• Use records from rock sites (presumably with hard rock or firm ground conditions).

• Assume intraplate refers to area that are tectonically stable and geologically more uniform than plate boundary areas. Select records from several ‘reasonably’ intraplate areas (eastern N. America, China, Australia, and some parts of Europe), due to lack of data.

• Select records which are available unprocessed and with sufficient information on natural frequency and damping of instrument.

• Use $M_s$, when available, because reasonably unbiased with respect to source dimensions and there is globally consistent calculation method.

• Most (72%) records from earthquakes with $M \leq 5.5$. Tangshan and Friuli sequence comprise a large subset. Correlation coefficient between magnitude and distance is 0.31.

• Instrument correct records and elliptical filter with pass band 0.25 to 25.0 Hz.

• If depth unknown assume 15 km.

• Choose $R_0 = 100$ km although depends on crustal structure and focal depth. It is distance at which spherical spreading for S waves overtaken by cylindrical spreading for Lg waves.

• PGA attenuation relation is pseudo-acceleration equation for 0.025 s period and 5% damping.

• Plot residuals against magnitude and distance.

• Note ‘first order’ results, because data from several geological regions and use limited data base.

3.65 Jacob et al. (1990)

• Ground motion model is:

$$A = 10^{(a_1 + a_2 M + a_3 \log d + a_4 d)}$$

where $A$ is in g, $a_1 = -1.43$, $a_2 = 0.31$, $a_3 = -0.62$ and $a_4 = -0.0026$ ($\sigma$ not given).

• Note equation only for hard rock sites.

• Equation from a composite of two separate regressions: one using data from 6 earthquakes, $4.7 \leq M \leq 6.4$ and $d$ primarily between 40 and 820 km and one using the same data supplemented with data from 2 earthquakes with $M = 1.8$ and $M = 3.2$ and $d \leq 20$ km to extend results to smaller $M$ and $d$. Give no details of this composite regression.

• Note regressions are preliminary and should be tested against more data.

• Note careful assessment of uncertainties is required.
3.66 Sen (1990)

- Ground motion model is:
  \[
  \ln \text{PGA} = a + bM + c \ln(r + h) + \phi F
  \]
  where PGA is in \(\text{cm}^2 \cdot \text{s}^{-2}\), \(a = 1.375\), \(b = 1.672\), \(c = -1.928\) and \(\phi = 0.213\) (\(h\) not given).
  Standard deviation is composed of two parts, inter-site \(\tau = 0.261\) and intra-site \(\sigma = 0.653\).
  \(F = 1\) for thrust mechanism and 0 otherwise.

- Computes theoretical radiation pattern and finds a linear trend between residuals and radiation pattern but does not model.

3.67 Sigbjörnsson (1990)

- Ground motion model is:
  \[
  a_{\text{peak}} = a_0 \exp(\alpha_1 M) \exp(-\alpha_2 R) R^{-\alpha} P
  \]
  where \(P = 1\).

- Notes that data are very limited and any definite conclusions should, therefore, be avoided.

- Does not give coefficients, only predictions.

3.68 Tsai et al. (1990)

- Ground motion model is:
  \[
  \ln y = C_0 + C_1 M + C_2 (8.5 - M)^{2.5} + C_3 \ln[D + C_4 \exp(C_5 M)]
  \]
  where \(C_3 = -2.1\), \(C_4 = 0.616\), \(C_5 = 0.524\) and for \(M \geq 6.5\) \(C_0 = -1.092\), \(C_1 = 1.10\), \(C_2 = 0\) and \(\sigma = 0.36\) and for \(M < 6.5\) \(C_0 = -0.442\), \(C_1 = 1.0\), \(C_2 = 0\) and \(\sigma = 1.27 - 0.14M\).

- All records from rock or rock-like sites.

- Separate equation for \(M < 6.5\) and \(M \geq 6.5\).

- Use only shallow crustal thrust earthquakes.

- Use another database of rock and soil site records and simulated acceleration time histories to find conversion factors to predict strike-slip and oblique ground motions from the thrust equation given above. For strike-slip conversion factor is 0.83 and for oblique conversion factor is 0.91.

- Standard deviation, \(\sigma\), for \(M \geq 6.5\) from regression whereas \(\sigma\) for \(M < 6.5\) from previous results. Confirm magnitude dependence of standard deviation using 803 recordings from 124 earthquakes, \(3.8 \leq M_w \leq 7.4\), \(D < 100\) km.

- Ground motion model is:

\[
\log a = \alpha + \beta M - \log r + br
\]

where \( r = (d^2 + h_0^2)^{1/2} \)

or: \( r = (d^2 + h^2)^{1/2} \)

where \( a \) is in \( g \), for horizontal PGA \( \alpha = -1.09, \beta = 0.238, b = -0.00050, h = 6.0 \) and \( \sigma = 0.28 \) and for vertical PGA \( \alpha = -1.34, \beta = 0.230, b = 0, h = 6.0 \) and \( \sigma = 0.27 \). When use focal depth explicitly: for horizontal PGA \( \alpha = -0.87, \beta = 0.217, b = -0.00117 \) and \( \sigma = 0.26 \) and for vertical PGA \( \alpha = -1.10, \beta = 0.200, b = -0.00015 \) and \( \sigma = 0.26 \).

- Consider two site classifications (without regard to depths of deposits) but do not model:
  1. Rock
  2. Alluvium

- Select records which have: \( M_s \geq 4.0 \) and standard deviation of \( M_s \) known and reliable estimates of source-site distance and focal depth, \( h \leq 25 \text{ km} \), regardless of local soil conditions from free-field and bases of small buildings. No reliable data or outliers excluded. Records from instruments at further distances from the source than the closest non-triggered instrument were non-excluded because of non-homogeneous and irregularly spaced networks and different and unknown trigger levels.

- Most data, about 70%, with distances less than 40 km. Note strong bias towards smaller values of magnitude and PGA.

- PGA read from analogue and digitised data, with different levels of processing. Differences due to different processing usually below 5%, but some may be larger.

- Errors in distances for small shocks may be large.

- Prefer one-stage technique because second step of two-stage method would ignore records from singly-recorded earthquakes which compose over half the events, also find more realistic, \( b \), and \( h_0 \) using one-stage method. Do not use weighting because involves assumptions which are difficult to verify.

- Find inadmissable and positive \( b \) for vertical PGA so remove and repeat.

- Remove records from distances less than or equal to half their focal depth and also less than or equal to their focal depth, find that \( h_0 \) is governed by near-field data.

- Use focal depth explicitly, by replacing \( r = (d^2 + h_0^2)^{1/2} \) by \( r = (d^2 + h^2)^{1/2} \). Find lower standard deviation and that it is very significant.

- Repeat analysis on subsets of records grouped by focal depth. Find no correlation between \( h_0 \) and focal depth of subset. Use \( h_0 \) equal to mean focal depth in each subset and find similar results to when focal depth used explicitly.
3. Summary of published attenuation relations for peak ground acceleration

- Repeat analysis with geometric attenuation coefficient equal to $-0.83$, corresponding to the Airy phase, as opposed to $-1.0$.
- Find small dependence of horizontal PGA on site classification, note due to level of information available.

3.70 Crouse (1991)

- Ground motion model is:

$$\ln \text{PGA} = p_1 + p_2 M + p_4 \ln(R + p_5 \exp(p_6 M)) + p_7 h$$

where PGA is in gal, using all PGA values $p_1 = 6.36, p_2 = 1.76, p_4 = -2.73, p_5 = 1.58, p_6 = 0.608, p_7 = 0.00916$ and $\sigma = 0.773$.

- Use data from stiff soil sites (depth of soil < 25 m).

- Include data from any zones with strong seismic coupling, such as the younger subduction zones (S.W. Japan, Alaska, C. America (Mexico), C. Chile, Peru and northern Honshu and Kuril subduction zones in Japan) unless compelling reasons to exclude data. Do this because lack of data from Cascadia. Most (> 70%) are from Japan.

- Focal depths, $h$, between 0 and 238 km.

- Compare Japanese and Cascadia PGA values for earthquakes with similar magnitude and depths and find similar.

- Do not exclude data from buildings or which triggered on S-wave. Note could mean some PGAs are underestimated.

- Plot ground motion amplitude (PGA and also some maximum displacements from seismograms) against distance for a number of large magnitude shocks (including some data from rock sites which not included in set for regression). Find that rate of attenuation becomes smaller for shorter distances and process is magnitude dependent. Also plot Japanese PGA data, from earthquakes with $h \leq 50$ km, split into three distance groups (between 50 and 75 km, between 100 and 150 km and between 250 and 300 km) find as distance increases magnitude scaling becomes larger and possible saturation in PGA for large magnitudes. Fit $\ln \text{PGA} = p_1 + p_2 \ln(R + C)$ to some PGA values from large magnitude shocks for $C = 0$ and $C > 0$, find lower standard deviation for $C > 0$.

- Fit $\ln \text{PGA} = a + bM$ and $\ln \text{PGA} = a + bM + cM^2$ to Japanese data split into the three distance groups (mentioned above); find $b$ increases with increasing distance range but both equations fit data equally well.

- Constrain $p_4$ to negative value and $p_5$ and $p_6$ to positive values.

- Include quadratic magnitude term, $p_3 M^2$, but find equal to zero.
Plot residuals against $M$; find uniformly distributed and evidence for smaller residuals for larger $M$.

Plot residuals against $R^4$ and find decreasing residuals for increasing $R$.

Give equation using only those records available in digital form (235 records).


Ground motion model is:

$$\ln \text{PGA} = \ln C_0 + C_1 M - 0.5 \ln r - \gamma r$$

where PGA is in $\text{cm s}^{-2}$, for Iberian Peninsula $\ln C_0 = -5.13$, $C_1 = 2.12$ and $\gamma = 0.0039$, for NE region $\ln C_0 = -4.74$, $C_1 = 2.07$ and $\gamma = 0.0110$ and for SSE region $\ln C_0 = -5.30$, $C_1 = 2.21$ and $\gamma = 0.0175$ ($\sigma$ is not given).

Derive equations for two regions:

SSE South south-east part of the Iberian peninsula, from the Guadalquivir basin to the Mediterranean Sea, including the Betic Cordillera, 140 records from 5 stations.

NE North-east part of the Iberian peninsula, including the Pyrenees, the Catalan Coastal Ranges, the Celtiberian chain and the Ebro basin, 107 records from 3 stations.

Use vertical-component short-period analogue records of Lg-waves (which are believed to have the largest amplitudes for the period range 0.1 to 1s) from regional earthquakes in Iberian Peninsula.

Processing procedure is: digitise seismogram using irregular sampling rate to get better sampling at peaks and ‘kinks’, select baseline, apply cubic spline interpolation and compare original and digitised seismograms. Next the Fourier amplitude spectrum is computed and the instrument amplitude response is removed.

Estimate PGA using the maximum value of pseudo-absolute acceleration obtained from Fourier amplitude spectra. Derived equations are for characteristic frequency of 5 Hz.

Compare estimated PGAs with observed PGAs from five earthquakes and find good agreement.

Use 5 Hz $\gamma$ values from Garcia-Fernandez & Canas (1992) and Vives & Canas (1992).

3.72 Huo & Hu (1991)

Ground motion model is (case II):

$$\log y = C_1 + C_2 M - C_4 \log[R + C_5 \exp(C_6 M)]$$

$^4$ Not shown in paper.
where $y$ is in gal, $C_5 = 0.231$ and $C_6 = 0.626$, for rock $C_1 = 0.894$, $C_2 = 0.563$, $C_4 = 1.523$ and $\sigma = 0.220$ and for soil $C_1 = 1.135$, $C_2 = 0.462$, $C_4 = 1.322$ and $\sigma = 0.243$ (these coefficients are from regression assuming $M$ and $R$ are without error).

- Use two site categories:
  1. Rock
  2. Soil

- Supplement western USA data in large magnitude range with 25 records from 2 foreign earthquakes with magnitudes 7.2 and 7.3.

- Note that there are uncertainties associated with magnitude and distance and these should be considered in derivation of attenuation relations.

- Develop method, based on weighted consistent least-square regression, which minimizes residual error of all random variables not just residuals between predicted and measured ground motion. Method considers ground motion, magnitude and distance to be random variables and also enables inverse of attenuation equation to be used directly.

- Note prediction for $R > 100$ km may be incorrect due to lack of anelastic attenuation term.

- Use both horizontal components to maintain their actual randomness.

- Note most data from moderate magnitude earthquakes and from intermediate distances therefore result possibly unreliable outside this range.

- Use weighted analysis so region of data space with many records are not overemphasized. Use $M$-$R$ subdivisions of data space: for magnitude $M < 5.5$, $5.5 \leq M \leq 5.9$, $6.0 \leq M \leq 6.4$, $6.5 \leq M \leq 6.9$, $7.0 \leq M \leq 7.5$ and $M > 7.5$ and for distance $R < 3$, $3 \leq R \leq 9.9$, $10 \leq R \leq 29.9$, $30 \leq R \leq 59.9$, $60 \leq R \leq 99.9$, $100 \leq R \leq 300$ and $R > 300$ km. Assign equal weight to each subdivision, and any data point in subdivision $i$ containing $n_i$ data has weight $1/n_i$ and then normalise.

- To find $C_5$ and $C_6$ use 316 records from 7 earthquakes ($5.6 \leq M \leq 7.2$) to fit $\log Y = \sum_{i=1}^{m} C_{2,i} E_i - C_4 \log [r + \sum_{i=1}^{m} R_{0,i} E_i]$, where $E_i = 1$ for $i$th earthquake and 0 otherwise. Then fit $R_0 = C_5 \exp(C_6 M)$ to results.

- Also try equations: $\log y = C_1 + C_2 M - C_4 \log [R + C_5]$ (case I) and $\log y = C_1 + C_2 M - C_3 M^2 - C_4 \log [R + C_5 \exp(C_6 M)]$ (case III) for $M \leq M_c$, where impose condition $C_3 = (C_2 - C_4 C_6 / \ln 10)/(2M_c)$ so ground motion is completely saturated at $M = M_c$ (assume $M_c = 8.0$).

- Find equations for rock and soil separately and for both combined.
3.73 I.M. Idriss (1991) reported in Idriss (1993)

- Ground motion model is:

\[
\ln(Y) = [\alpha_0 + \exp(\alpha_1 + \alpha_2 M)] + [\beta_0 - \exp(\beta_1 + \beta_2 M)]\ln(R + 20) + aF
\]

where \(Y\) is in g, \(\alpha = 0.2\), for \(M \leq 6\) \(\alpha_0 = -0.150, \alpha_1 = 2.261, \alpha_2 = -0.083, \beta_0 = 0, \beta_1 = 1.602, \beta_2 = -0.142\) and \(\sigma = 1.39 - 0.14M\) and for \(M > 6\) \(\alpha_0 = -0.050, \alpha_1 = 3.477, \alpha_2 = -0.284, \beta_0 = 0, \beta_1 = 2.475, \beta_2 = -0.286\) and for \(M < 7\frac{1}{4}\) \(\sigma = 1.39 - 0.14M\) and for \(M \geq 7\frac{1}{4}\) \(\sigma = 0.38\).

- Records from rock sites.

- Uses three fault mechanisms:
  
  \(F=0\) Strike slip
  
  \(F=0.5\) Oblique
  
  \(F=1\) Reverse

- Separate equations for \(M \leq 6\) and \(M > 6\).

- Examines residuals for PGA. Finds average residual almost zero over entire distance range; trend reasonable up to about 60 km but beyond 60 km relationship would underestimate recorded PGA.

- Finds standard deviation to be linear function of magnitude.

3.74 Niazi & Bozorgnia (1991)

- Ground motion model is:

\[
\ln Y = a + bM + d \ln[R + c_1 e^{c_2M}]
\]

where \(Y\) is in g, for horizontal PGA \(a = -5.503, b = 0.936, c_1 = 0.407, c_2 = 0.455, d = -0.816\) and \(\sigma = 0.461\) and for vertical PGA \(a = -5.960, b = 0.989, c_1 = 0.013, c_2 = 0.741, d = -1.005\) and \(\sigma = 0.551\).

- All records from SMART-1 array so essentially identical site conditions and travel paths.

- All records from free-field instruments mounted on 4 inch (10 cm) thick concrete base mats, approximately 2 by 3 feet (60 by 90 cm) across.

- Select earthquakes to cover a broad range of magnitude, distance and azimuth and ensuring thorough coverage of the array. Criteria for selection is: at least 25 stations recorded shock, focal depth < 30 km, hypocentral distance < 50 km except for two large earthquakes from beyond 50 km to constrain distance dependence.
• Focal depths between 0.2 and 27.2 km with all but one ≤ 13.9 km.

• Azimuths between 60° and 230°.

• Most records (78%) have magnitudes between 5.9 and 6.5. Note magnitude and distance are not independent (correlation coefficient is 0.6).

• Records have sampling interval of 0.01 s. Processed using trapezoidal band passed filter with corner frequencies 0.07, 0.10, 25.0 and 30.6 Hz.

• Not enough information to use distance to rupture zone.

• Source mechanisms of earthquakes are: 4 normal, 2 reverse, 1 reverse oblique and 1 normal oblique with 4 unknown. Do not model source mechanism dependence because of 4 unknown mechanisms.

• Use weighted regression, give equal weight to recordings from each earthquake within each of 10 distance bins (< 2.5, 2.5–5.0, 5.0–7.5, 7.5–10.0, 10.0–14.1, 14.1–20.0, 20–28.3, 28.3–40.0, 40.0–56.6 and 56.6–130 km). Do this so earthquakes with smaller number of recordings are not overwhelmed by those with a larger coverage and also to give additional weight to shocks recorded over multiple distance bins. Apply two-stage regression, because of high correlation between magnitude and distance, excluding 3 earthquakes (M = 3.6, 5.0, 7.8) with 162 records from first stage to reduce correlation between M and R to 0.1. Also do one-stage regression although do not give coefficients.

• Use mean horizontal component because reduces uncertainty in prediction.

• Examine coefficient of variation for each earthquake using median and normalized standard deviation of recordings in inner ring of array. Find evidence for magnitude dependent uncertainty (large magnitude shocks show less uncertainty). Find that main contribution to scatter is inter-event variations again by examining coefficient of variation; although note may be because using dense array data.

• Examine mean residuals of observations from each earthquake. Find evidence for higher than predicted vertical PGA from reverse faulting earthquakes and lower than predicted vertical PGA from normal faulting earthquakes, although due to lack of information for 4 earthquakes note that difficult to draw any conclusions.

• Examine mean residuals of observations from each station in inner ring. Find mean residuals are relatively small compared with standard deviation of regression so variation between stations is less than variation between earthquakes. Find for some stations some large residuals.

3.75 Rogers et al. (1991)

• Ground motion model is:

$$\log a_p = a_1 + 0.36M - 0.002R + a_2 \log R + a_3 S_1 + a_4 S_1 \log R + a_5 S_5 + a_6 S_5 \log R + a_7 S_6 \log R$$
3. Summary of published attenuation relations for peak ground acceleration

where \( a_1 = -1.62, a_2 = -1.01, a_3 = 0.246, a_4 = 0.212, a_5 = 0.59, a_6 = -0.29, a_7 = 0.21 \)
and \( \sigma = 0.29 \).

- Use six local site classifications:
  
  \( S_1 \) Holocene
  
  \( S_2 \) Pleistocene soil
  
  \( S_3 \) Soft rock
  
  \( S_4 \) Hard rock
  
  \( S_5 \) Shallow (< 10 m depth) soil
  
  \( S_6 \) Soft soil (e.g. bay mud)

- Data from about 800 different stations.

- Note that inclusion of subduction-zone events in analysis may affect results with unmodelled
  behaviour, particularly with regard to distance scaling although believe use of \( d_r \) partially
  mitigates this problem.

- Firstly compute an equation does not include site coefficients. Conduct regression analysis on
  site-condition subsets of the residuals using \( M \) or \( \log R \) as dependent variable. Find several
  regressions are not statistically significant at the 5\% level and/or the predicted effects are small
  at the independent variable extremes. Find strongest effects and most significant results are
  for shallow soil sites and soft soil sites although because of the high correlation between \( M \)
  and \( \log R \) in the set used it is difficult to construct unbiased models.

- Use a stochastic random-vibration approach to find theoretical equations for estimating PGA
  that include the effect of local site conditions as distance-dependent terms. Using the results
  from this analysis construct equation based on the observed PGAs. Try including terms for
  \( S_1, S_2, S_5, S_6 \) and corresponding \( \log R \) terms for each site type but iterate to retain only the
  significant terms.

- Fix magnitude scaling (0.36\( M \)) and anelastic attenuation (0.002\( R \)). Do not try to optimise
  the fit other than using fixed values similar to those given by the stochastic analysis.

- Note that anelastic coefficient may be too low but it produces an acceptable geometric spreading
  term.

- Note that because Moho critical reflections can increase amplitudes beyond about 50 km the
  effects of anelastic or geometric attenuation may be masked.

- Allowing all the coefficients in the equation to be free produces a smaller magnitude scaling co-
  efficient, a smaller geometric spreading coefficient, and a non-significant anelastic attenuation
  term.

- Note that data from \( S_5 \) and \( S_6 \) are sparse.
• Compare estimated PGAs with data from within small magnitude ranges. Find that PGAs from Morgan Hill earthquake are overestimated, which believe is due to the unilateral rupture of this earthquake masking the effect of the local site conditions.

3.76 Abrahamson & Youngs (1992)

• Ground motion model is:
\[ \ln y = a + bM + d \ln(r + c) + eF \]
where \( a = 0.0586 \), \( b = 0.696 \), \( c = 12.0 \), \( d = -1.858 \), \( e = 0.205 \), \( \sigma = 0.399 \) (intra-event) and \( \tau = 0.201 \) (inter-event) (units of \( y \) are not given but probably \( g \)).

• \( F \) is fault type (details not given).

• Develop new algorithm for one-stage maximum-likelihood regression, which is more robust than previous algorithms.

3.77 Ambraseys et al. (1992)

• Ground motion model is:
\[ \log(a) = c_1 + c_2M + c_3r + c_4 \log r \]
\[ r = (d^2 + h_0^2)^{\frac{1}{2}} \]
where \( a \) is in \( g \), \( c_1 = -1.038 \), \( c_2 = 0.220 \), \( c_3 = -0.00149 \), \( c_4 = -0.895 \), \( h_0 = 5.7 \) and \( \sigma = 0.260 \).

• Investigate equations of PML (1982) and PML (1985) using criteria:
  1. Is the chosen data set of earthquake strong-motion records suitable to represent the UK seismic environment?
  2. Are the associated seismological and geophysical parameters used in these reports reliable and consistent?
  3. Is the methodology used to derive attenuation laws and design spectra from the data set reliable?

• Investigate effect of different ground motion model, one and two-stage regression technique, record selection technique and recalculation of associated parameters. Find these choice cause large differences in predictions.

• Coefficients given above are for PML (1985) data with recalculated magnitudes and distances and addition of extra records from some earthquakes.

- Ground motion model is (note that there is a typographical error in Kamiyama et al. (1992); Kamiyama (1995) because $r_t$ has been replaced by $r_c$ in equations):

$$\log_{10} a_{\max} = -1.64 R_0 + b_1 R_1 + b_2 R_2 + c_a + \sum_{i=1}^{N-1} A_i S_i$$

$$R_0 = \begin{cases} 
0 & \text{for } r \leq r_t \\
\log_{10} r - \log_{10} r_c & \text{for } r > r_t 
\end{cases}$$

$$R_1 = \begin{cases} 
0 & \text{for } r \leq r_t \\
1 & \text{for } r > r_t 
\end{cases}$$

$$R_2 = \begin{cases} 
0 & \text{for } r \leq r_t \\
M & \text{for } r > r_t 
\end{cases}$$

where $S_i = 1$ for $i$ station, $S_0 = 0$ otherwise, $a_{\max}$ is in $\text{cm/s}^2$, $b_1 = -1.64$, $b_2 = 0.358$, $c_a = 2.91$, $r_c = 5.3 \text{ km}$ and $\sigma = 0.247$ ($A_i$ given in publications but not reported here due to lack of space).

- Instrument correct records and filter with pass band between 0.24 and 11 Hz.

- Model individual soil conditions at each site as amplification factors, $\text{AMP}_i$, as described by Kamiyama & Yanagisawa (1986).

- Most records are from hypocentral distances between 30 and 200 km.

- Focal depths between 0 and 130 km.

- Models peak ground accelerations independent of magnitude and distance in a fault zone, $r_t$, where $r_t = r_c 10^{(b_1 + b_2 M)/1.64}$.

- Constrain decay with distance in far field to $-1.64$ using results from other studies to avoid problems due to correlation between $M$ and $\log_{10} r$.

- Use trial and error method to find $r_c$ so that resulting values of $r_t$ are consistent with empirical estimates of fault length from past studies.

- Also give expression using shortest distance to fault plane (rupture distance), $R$, by replacing the expression for $r \leq r_c$ and $r > r_c$ by one expression given by replacing $r$, hypocentral distance, by $R + r_c$ in expression for $r > r_c$. This gives PGA independent of magnitude at distance $R = 0 \text{ km}$.

- Note that use of $d_h$ is not necessarily best choice but use it due to simplicity.

- Check residual plots; find no trends so conclude adequate from statistical point of view.
3.79 Sighjörnsson & Baldvinsson (1992)

- Ground motion model is:
  \[
  \log A = \alpha + \beta M - \log R + bR
  \]
  with: \( R = \sqrt{d^2 + h^2} \)

  where \( A \) is in \text{g}, for average horizontal PGA and \( 4 < M < 6 \) \( \alpha = -1.98, \beta = 0.365, b = -0.0039 \) and \( \sigma = 0.30 \), for larger horizontal PGA and \( 4 < M < 6 \) \( \alpha = -1.72, \beta = 0.327, b = -0.0043 \) and \( \sigma = 0.30 \) and for both horizontal PGAs and \( 2 < M < 6 \) \( \alpha = -2.28, \beta = 0.386, b = 0 \) and \( \sigma = 0.29 \).

- Find that Icelandic data does not fit other published relations.

- Find equation using only records with \( M \geq 4.0 \), \( h \) equal to focal depth and both the horizontal components.

- Find equation using only records with \( M \geq 4.0 \), \( h \) equal to focal depth and larger horizontal component.

- Also repeated with all data. Anelastic coefficient constrained to zero because otherwise positive.

- Also done with \( h \) free.

- Note that large earthquakes have \( h \approx 10 \text{ km} \) while small events have \( h \approx 5 \text{ km} \).

3.80 Taylor Castillo et al. (1992)

- Ground motion model is:
  \[
  \ln(A) = a_1 + a_2 M_s + a_3 \ln(R) + a_4 R
  \]
  where \( A \) is in \text{ms}^{-2}, \( a_1 = 0.339, a_2 = 0.455, a_3 = -0.67, a_4 = -0.00207 \) and \( \sigma = 0.61 \).

3.81 Tento et al. (1992)

- Ground motion model is:
  \[
  \ln \text{PGA} = b_1 + b_2 M + b_3 R - \ln R
  \]
  where \( R = (d^2 + h^2)^{1/2} \)

  where PGA is in \text{gal}, \( b_1 = 4.73, b_2 = 0.52, b_3 = -0.00216 \), \( h \) is mean focal depth of group into which each earthquake is classified and \( \sigma = 0.67 \).

- Most records from distances between 10 km and 40 km.
• Correction technique based on uniform Caltech correction procedure. Most (125) were automatically digitised, rest were manually digitised. Roll-on and cutoff frequencies of Ormsby filter were selected by adopting a record dependent criteria. Cutoff frequencies range between 0.13 Hz and 1.18 Hz with a median of 0.38 Hz.

• Records included from analysis were from free-field stations. Excluded those not complete (e.g. started during strong-motion phase). Excluded those with epicentral distances greater than that of first nontriggered station.

• Note relatively small influence of form of equation adopted although two step method seems preferable.

• Note correction procedure plays a relevant role in analysis.

• Note using $d$ instead of $R$ causes greater scatter in data.

• Note moderate underestimation for low magnitude in near field and for high magnitude in far field.

### 3.82 Theodulidis & Papazachos (1992)

• Ground motion model is:

$$\ln Y = C_1 + C_2 M + C_3 \ln(R + R_0) + C_4 S$$

where $Y$ is in $\text{cms}^{-2}$, $C_1 = 3.88$, $C_2 = 1.12$, $C_3 = -1.65$, $R_0 = 15$, $C_4 = 0.41$ and $\sigma = 0.71$.

• Use two site categories (mean opinion of seven specialists who classified sites into three categories: soft alluvium, crystalline rock and intermediate):

$S=1$ Rock: 34+4 records. Japanese sites have diluvium with depth to bedrock $H < 10 \text{ m}$. Alaskan sites have PGV/PGA $\approx 66 \pm 7 \text{ cms}^{-1} \text{g}^{-1}$.

$S=0$ Alluvium: 71+12 records. Japanese sites have diluvium $H > 10 \text{ m}$ or alluvium $H < 10 \text{ m}$, and alluvium with $H < 25 \text{ m}$ as well as soft layers with thickness $< 5 \text{ m}$. Alaskan sites have PGV/PGA $> 66 \pm 7 \text{ cms}^{-1} \text{g}^{-1}$.

• 70% of records from ground level or basement of buildings with two storeys or less. Rest from buildings with up to eight storeys.

• Some (16) Greek records manually digitized and baseline corrected, some (22) Greek records manually digitized and filtered and rest of the Greek records automatically digitized and filtered.

• Due to lack of data for $7.0 < M_s < 7.5$ include shallow subduction data from other regions with similar seismotectonic environments (Japan and Alaska) using criteria i) depth $< 35 \text{ km}$, ii) $M_w$ or $M_{\text{JMA}}$ between 7.0 and 7.5, iii) instruments triggered before S-wave, iv) free-field recording, v) surface geology known at station. Note $M_s$, $M_w$ and $M_{\text{JMA}}$ are equivalent between 6.0 and 8.0.
• Focal depths between 0 km (13 km) and 18 km (31 km).

• Most data from $M_s < 5.5$ and from $R < 50$ km.

• Use four step regression procedure. First step use only Greek data from $M_s > 6.0$ ($9 \leq R \leq 128$ km, 14 records) for which distances are more reliable (use both hypocentral and epicentral distance find epicentral distance gives smaller standard deviation) to find geometrical coefficient $C_{31}$ and $R_0$ ignoring soil conditions. Next find constant ($C_{12}$), magnitude ($C_{22}$) and soil ($C_{42}$) coefficients using all data. Next recalculate geometrical ($C_{33}$) coefficient using only Greek data with $M_s > 6.0$. Finally find constant ($C_{14}$), magnitude ($C_{24}$) and soil ($C_{44}$) coefficients using all the data; final coefficients are $C_{14}$, $C_{24}$, $C_{33}$ and $C_{44}$.

• Plot residuals against $M_s$ and $R$ and find no apparent trends. Find residuals (binned into 0.2 intervals) fit normal distribution.

3.83 Boore et al. (1993) & Boore et al. (1997)

• Ground motion model is:

$$\log Y = b_1 + b_2(M - 6) + b_3(M - 6)^2 + b_4r + b_5 \log r + b_6G_B + b_7G_C$$

where $r = (d^2 + h^2)^{1/2}$

where $Y$ is in g, for randomly-oriented horizontal component (or geometrical mean) $b_1 = -0.105$, $b_2 = 0.229$, $b_3 = 0$, $b_4 = 0$, $b_5 = -0.778$, $b_6 = 0.162$, $b_7 = 0.251$, $h = 5.57$ and $\sigma = 0.230$ (for geometrical mean $\sigma = 0.208$) and for larger horizontal component $b_1 = -0.038$, $b_2 = 0.216$, $b_3 = 0$, $b_4 = 0$, $b_5 = -0.777$, $b_6 = 0.158$, $b_7 = 0.254$, $h = 5.48$ and $\sigma = 0.205$.

• Use three site categories:

Class A $V_{s,30} > 750$ ms$^{-1}$, some categorised using measured shear-wave velocity, most estimated $\Rightarrow G_B = 0, G_C = 0$, 48 records

Class B $360 < V_{s,30} \leq 750$ ms$^{-1}$, some categorised using measured shear-wave velocity, most estimated $\Rightarrow G_B = 1, G_C = 0$, 118 records.

Class C $180 < V_{s,30} \leq 360$ ms$^{-1}$, some categorised using measured shear-wave velocity, most estimated $\Rightarrow G_B = 0, G_C = 1$, 105 records.

where $V_{s,30}$ is average shear-wave velocity to 30 m.

• Define shallow earthquakes as those for which fault rupture lies mainly above a depth of 20 km.

• Peak acceleration scaled directly from accelerograms, in order to avoid bias from sparsely sampled older data.

• Do not use data from structures three storeys or higher, from dam abutments or from base of bridge columns. Do not use data from more than one station with the same site condition within a circle of radius 1 km (note that this is a somewhat arbitrary choice).
3. Summary of published attenuation relations for peak ground acceleration

- Exclude records triggered by S wave.
- Do not use data beyond cutoff distance which is defined as equal to lesser of distance to the first record triggered by S wave and closest distance to an operational nontriggered instrument.
- Note that little data beyond 80 km.
- Due to positive values of $b_4$ when $b_5 = -1$, set $b_4$ to zero and let $b_5$ vary.

3.84 Campbell (1993)

- Ground motion model is:
  \[
  \ln(Y) = \beta_0 + a_1 M + \beta_1 \tanh[a_2(M - 4.7)] - \ln(R^2 + [a_3 \exp(a_4 M)]^2)^{1/2} - (\beta_4 + \beta_5 M)R + a_4 F + [\beta_2 + a_5 \ln(R)]S + \beta_3 \tanh(a_6 D)
  \]
  where $Y$ is in g, $\beta_0 = -3.15$, $\beta_1 = 0$, $\beta_2 = 0$, $\beta_3 = 0$, $\beta_4 = 0.0150$, $\beta_5 = -0.000995$, $a_1 = 0.683$, $a_2 = 0.647$, $a_3 = 0.0586$, $a_4 = 0.27$, $a_5 = -0.105$, $a_6 = 0.620$ and $\sigma = 0.50$.

- Uses two site categories:
  S=0 Quaternary deposits (soil).
  S=1 Tertiary or older sedimentary, metamorphic, and igneous deposits (rock).
  Also includes depth to basement rock (km), D.

- Uses two fault mechanisms:
  F=0 Strike-slip.
  F=1 Reverse, reverse-oblique, thrust, and thrust-oblique.
  Recommends use $F = 0.5$ for normal or unknown mechanisms.

- Gives estimates of average minimum depths to top of seismogenic rupture zone.

- Uses stochastic simulation model to find anelastic coefficients $\beta_4$ and $\beta_5$ because uses only near-source records.

- Uses weighted nonlinear regression method based on Campbell (1981) to control dominance of well-recorded earthquakes.


- Ground motion model is (Type A):
  \[
  \log_{10} PGA = a + bM_w - cr - d \log_{10} r
  \]
  where $PGA$ is in g, $a = -1.434 \pm 0.339$, $b = 0.209 \pm 0.036$, $c = 0.00297 \pm 0.00093$, $d = -0.449 \pm 0.186$ and $\sigma = 0.276$. 
Find that ground motions in previous earthquakes were significantly higher than the motions predicted by equations derived from W. N. America data.

Only include records from earthquakes for which $M_w$ is known because of poor correlation between $M_L$ and $M_w$ in New Zealand.

Focal depths, $h_e \leq 122$ km.

140 records from reverse faulting earthquakes.

Divide records into crustal and deep earthquakes.

Only use records for which reliable event information is available, regardless of their distances with respect to untriggered instruments.

Only use records which triggered on the P-wave.

Also derive separate equations for shallow, upper crustal earthquakes ($h_e \leq 20$ km, 102 records, $5.1 \leq M_w \leq 7.3, 13 \leq r \leq 274$ km) and crustal earthquakes ($h_e \leq 50$ km, 169 records, $5.1 \leq M_w \leq 7.3, 13 \leq r \leq 274$ km).

Also try equations of form: $\log_{10} PGA = a + bM_w - d \log_{10} r$ (Type B) and $\log_{10} PGA = a + bM_w - cr - d \log_{10} r$ (Type C) because of large standard errors and highly correlated estimates for some of the coefficients (particularly $c$ and $d$). Find Type B usually gives much reduced standard errors for $d$ than Type A model and have lowest correlation between coefficients, but are sceptical of extrapolating to distance ranges shorter and longer than the range of data. Type C usually has similar standard deviations to Type A. Find that usually all three models give similar predictions over distance range of most of the data, but sometimes considerably different values at other distances.

Derive separate equations for reverse faulting earthquakes only and usually find similar results to the combined equations.

Find deep earthquakes produce significantly higher PGAs than shallow earthquakes for similar $r$.

3.86 Sadigh et al. (1993) & Sadigh et al. (1997)

Ground motion model is:

$$\ln PGA = C_1 + C_2M + C_3 \ln (r_{rup} + C_4 e^{C_5M}) + C_6 Z_T$$

where PGA is in g, for horizontal PGA, rock sites and strike-slip faulting $C_3 = 0$ and $C_4 = -2.100$, for $M \leq 6.5$ $C_1 = -0.624$, $C_2 = 1.0$, $C_5 = 1.29649$ and $C_6 = 0.250$ and for $M > 6.5$, $C_1 = -1.274$, $C_2 = 1.1$, $C_5 = -0.48451$ and $C_6 = 0.524$. For reverse and thrust earthquakes multiply strike-slip prediction by 1.2. $\sigma = 1.39 - 0.14 M$ for $M < 7.21$ and $\sigma = 0.38$ for $M \geq 7.21$. For horizontal PGA and deep soil $C_2 = 1.0$, $C_3 = 1.70$ and $C_6 = 0$, for strike-slip
faulting $C_1 = -2.17$ and for reverse or thrust faulting $C_1 = -1.92$, for $M \leq 6.5$ $C_4 = 2.1863$ and $C_5 = 0.32$ and for $M > 6.5$ $C_4 = 0.3825$ and $C_5 = 0.5882$. $\sigma = 1.52 - 0.16M$ for $M \leq 7$ and $\sigma = 0.40$ for $M = 7$.

For vertical PGA, rock sites and strike-slip faulting $C_3 = 0$ and $C_4 = -2.300$, for $M \leq 6.5$ $C_1 = -0.430$, $C_2 = 1.0$, $C_5 = 1.2726$ and $C_6 = 0.228$ and for $M > 6.5$, $C_1 = -1.080$, $C_2 = 1.1$, $C_5 = -0.3524$ and $C_6 = 0.478$. For reverse and thrust earthquakes multiply strike-slip prediction by 1.1 and for oblique faulting multiply by 1.048. $\sigma = 0.48$ for $M \geq 6.5$, $\sigma = 3.08 - 0.40M$ for $6 < M < 6.5$ and $\sigma = 0.68$ for $M \leq 6$.

- Use two site categories (for horizontal motion):
  1. Rock: bedrock within about a metre of surface. Note that many such sites are soft rock with $V_s \leq 750 \text{ms}^{-1}$ and a strong velocity gradient because of near-surface weathering and fracturing, 274 records.
  2. Deep soil: greater than 20 m of soil over bedrock. Exclude data from very soft soil sites such as those from San Francisco bay mud, 690 records.

Vertical equations only for rock sites.

- Crustal earthquakes defined as those that occur on faults within upper 20 to 25 km of continental crust.

- Use source mechanism: RV=reverse (26+2) $\Rightarrow Z_T = 1$ and SS=strike-slip (and some normal) (89+0) $\Rightarrow Z_T = 0$. Classified as RV if rake > 45$^\circ$ and SS if rake < 45$^\circ$. Find peak motions from small number of normal faulting earthquakes not to be significantly different than peak motions from strike-slip events so were including in SS category.

- Records from instruments in instrument shelters near ground surface or in ground floor of small, light structures.

- 4 foreign records (1 from Gazli and 3 from Tabas) supplement Californian records.

- Separate equations for $M_w < 6.5$ and $M_w \geq 6.5$ to account for near-field saturation effects and for rock and deep soil sites.

### 3.87 Singh et al. (1993)

- Ground motion model is:
  
  \[
  \log(A) = a_1 + a_2 M + a_3 \log(G(R_0)) + a_4 R_0
  \]
  
  where \( R_0^2 = R^2 + (e^{a_5 M})^2 \)
  
  \( G(R_0) = R_0 \) for: \( R_0 \leq 100 \text{km} \)
  
  and: \( G(R_0) = \sqrt{(100R_0)} \) for: \( R_0 > 100 \text{km} \)

where $A$ is in $\text{cms}^{-2}$, $a_1 = 2.74$, $a_2 = 0.212$, $a_3 = -0.99$, $a_4 = -0.000943$, $a_5 = 0.47$ and $\sigma = 0.26$. 

• Use same data as Taylor Castillo et al. (1992).
• Employ several different regression techniques.
• Select equation found by Bayesian method (given above) for hazard study.

3.88 Sun & Peng (1993)

• Ground motion model is:

\[ \ln A = a + bM - c \ln(R + h) + dT_s \]

where \( A \) is in cm\(s^{-2} \), \( a = 7.7 \), \( b = 0.49 \), \( c = 1.45 \), \( d = 0.19 \), \( h = 25.0 \) and \( \sigma = 0.46 \).

• Model soil using its fundamental period of the overburden soil, \( T_s \). Thickness of deposit defined as depth to rock base, defined either as \( V_s > 800 \text{ ms}^{-1} \) or when ratio of shear-wave velocity in \( i \)th layer to shear-wave velocity in \( i - 1 \)th layer is greater than 2 (only calculate period to 100 m because only have important effect on structure). For outcropping rock, \( T_s = 0.05 \text{ s} \).

• Eight distance intervals used for weighting, five 10 km wide up to 50 km, 50–69.9 km, 70–99.9 km and 100–200 km. Within each interval each earthquake received equal weight, inversely proportional to number of records from that earthquake in interval.

• Use resolve accelerations in direction, \( \theta \), which gives largest value. Find scatter is lower than for larger horizontal component.

• Many (27) earthquakes only have one record associated with them and 60 records are from San Fernando.

3.89 Ambraseys & Srbulov (1994)

• Ground motion model is:

\[ \log a = b_1 + b_2 M_s + b_3 r + b_4 \log r \]

where \( r = (d^2 + h_0^2)^{0.5} \)

where \( a \) is in g, \( b_1 = -1.58 \), \( b_2 = 0.260 \), \( b_3 = -0.00346 \), \( b_4 = -0.625 \), \( h_0 = 4 \) and \( \sigma = 0.26 \).

• Do not consider effect of site geology but expect it to be statistically insignificant for PGA.

• Focal depths, \( h < 25 \text{ km} \). Mean focal depth is 10 ± 4 km.

• Mean magnitude of earthquakes considered is 6.0 ± 0.7.

• Most records from \( d < 100 \text{ km} \).

• Only use records with PGA > 0.01 g.
• Records mainly from SMA-1s located at ground floor or in basements of buildings and structures and free-field sites regardless of topography.

• Records from thrust earthquakes (46% of total), normal earthquakes (26%) and strike-slip earthquakes (28%).

• Baseline correct and low-pass filter records. Select cut-offs from visual examination of Fourier amplitude spectrum of uncorrected time-histories and choose cut-off below which the Fourier amplitude spectrum showed an unrealistic energy increase due to digitization noise and instrument distortions.

• Find (from reprocessing about 300 records) that with very few exceptions differences in PGAs arising from different methods of processing are not significant, remaining below 3%.

• Also derive equation which includes focal depth explicitly.

3.90 Boore et al. (1994a) & Boore et al. (1997)

• Based on Boore et al. (1993) see Section 3.83

• Ground motion model is:

\[
\log Y = b_1 + b_2(M - 6) + b_3(M - 6)^2 + b_4r + b_5\log r + b_V(\log V_S - \log V_A)
\]

where \( r = (d^2 + h^2)^{1/2} \)

where \( Y \) is in g, \( b_1 \) to \( b_5 \), \( h \) and \( \sigma \) are same as for Boore et al. (1993) (see Section 3.83) and for randomly oriented component \( b_V = -0.371 \) and \( V_A = 1400 \) and for larger horizontal component \( b_V = -0.364 \) and \( V_A = 1390 \).

• Model site effect as a continuous function of average shear-wave velocity to 30 m deep, \( V_S \).

• Coefficients \( b_1 \), \( b_2 \), \( b_3 \), \( b_4 \) and \( b_5 \) from Boore et al. (1993).

• Find no basis for different magnitude scaling at different distances.

• Find evidence for magnitude dependent uncertainty.

• Find evidence for amplitude dependent uncertainty.

• Find marginal statistical significance for a difference between strike-slip (defined as those with a rake angle within 30° of horizontal) and reverse-slip motions but do not model it. Modelled in Boore et al. (1994b) (by replacing \( b_1 \) by \( b_{SS}G_{SS} + b_{RS}G_{RS} \) where \( G_{SS} = 1 \) for strike-slip shocks and 0 otherwise and \( G_{RS} = 1 \) for reverse-slip shocks and 0 otherwise) and reported in Boore et al. (1997). Coefficients for randomly oriented horizontal component are: \( b_{SS} = -0.136 \) and \( b_{RS} = -0.051 \).\(^5\)

\(^5\) These are taken from Table 8 of Boore et al. (1997) which uses natural logarithms so they were converted into terms of logarithms to base 10.
• Analysis done using one and two-stage maximum likelihood methods; note that results are very similar.

• Earthquakes with magnitudes below 6.0 are poorly represented.

• Note that few Class A records.

• Note that $V_S$ does not model all the effects of site because it does not model effect of the thickness of attenuating material on motion.

• Note that ideally would like to model site in terms of average shear-wave velocity to one-quarter wavelength.

• Note lack measurements from distances greater than 100 km so that weak-motion data from seismographic stations maybe should be used.

• Note that use of cutoff distances independent of geology or azimuth may be over strict but it is simple and objective. Note that methods based on data from nontriggered stations or using seismogram data may be better.

### 3.91 Fukushima et al. (1994) & Fukushima et al. (1995)

• Ground motion model is:

$$\log Y = aM + bX - \log X + \sum \delta_i c_i$$

where $Y$ is in $\text{cms}^{-2}$, $\delta_i = 1$ at $i$th receiver and 0 otherwise, for horizontal PGA $a = 0.918$ and $b = -0.00846$ ($\sigma$ not given) and for vertical PGA $a = 0.865$ and $b = -0.00741$ ($\sigma$ not given). $c_i$ given in paper but are not reported here due to lack of space.

• Data from three vertical arrays in Japan so predictions at surface and at different depths down to 950 m.

• Different definition of $M_{JMA}$ for focal depths $> 60$ km so exclude such data. Focal depths between 2 and 60 km.

• Exclude data from earthquakes $M < 5.0$ because errors are larger for smaller events.

• Exclude data for which predicted, using a previous attenuation relation, PGV < 0.1 $\text{cms}^{-1}$ in order to find precise attenuation rate.

• Most data from earthquakes with $M \leq 6.0$ and most from $X \leq 100$ km.

• Records low-pass filtered with cutoff frequency 25 Hz for records from 2 sites and 30 Hz for records from 1 site.

• Use two-stage method because positive correlation between $M$ and $X$. Also apply one step; find it is biased and two-stage method is most effective method to correct bias.

• Check residuals (not shown) against $M$ and $X$ find no remarkable bias.
3. Summary of published attenuation relations for peak ground acceleration

3.92 Lawson & Krawinkler (1994)

- Ground motion model is:
\[
\log Y = a + b(M - 6) + c(M - 6)^2 + d\sqrt{R^2 + h^2} + e\log\sqrt{R^2 + h^2} + fS_B + gS_C
\]

- Use three site categories:
  A Firm to hard rock: granite, igneous rocks, sandstones and shales with close to widely
  spaced fractures, \(750 \leq V_{s,30} \leq 1400\) ms\(^{-1}\) \(\Rightarrow S_B = 0, S_C = 0\).
  B Gravelly soils and soft to firm rocks: soft igneous rocks, sandstones and shales, gravels
  and soils with > 20% gravel, \(360 \leq V_{s,30} \leq 750\) ms\(^{-1}\) \(\Rightarrow S_B = 1, S_C = 0\).
  C Stiff clays and sandy soils: loose to very dense sands, silt loams and sandy clays, and
  medium stiff to hard clay and silty clays (N > 5 blows/ft), \(180 \leq V_{s,30} \leq 360\) ms\(^{-1}\)
  \(\Rightarrow S_B = 0, S_C = 1\).

- For shallow (fault rupture within 20 km of earth surface) crustal earthquakes.

- Use free-field records. Records not significantly contaminated by structural feedback, excludes
  records from structures with >2 stories.

- Chooses ground motion model because of simplicity. Note that other possible forms of equation
  may have significant effect on results, but including more terms complicates relationships
  without reducing variability.

- Do not give coefficients only predictions.

3.93 Lungu et al. (1994)

- Ground motion model is:
\[
\ln \text{PGA} = c_1 + c_2M_w + c_3\ln R + c_4h
\]
where PGA is in g, \(c_1 = -2.122, c_2 = 1.885, c_3 = -1.011, c_4 = -0.012\) and \(\sigma = 0.502\).

- Focal depth, \(h\), between 79 and 131 km.

- Consider to separate areas of 90\(^\circ\) to investigate variation with respect to azimuth; find azimutal
  dependence.

- Find individual attenuation equations for three earthquakes. Note faster attenuation for smaller
  magnitude and faster attenuation for deeper events.
3. Summary of published attenuation relations for peak ground acceleration

3.94 Musson et al. (1994)

- Ground motion model is (model 1):
  \[ \ln A = a + bM - \ln(R) + dR \]
  where \( A \) is in \( \text{cm}^2 \text{s}^{-2} \), \( a = 2.11 \), \( b = 1.23 \) and \( d = -0.014 \).
  Ground motion model is (model 2):
  \[ \ln A = c_1 + c_2M + c_4R + \ln G(R, R_0) \]
  where \( G(R, R_0) = R^{-1} \) for \( R \leq R_0 \)
  and: \( G(R, R_0) = R_0^{-1} R_0^{5/6} \) for \( R > R_0 \)
  where \( A \) is in \( \text{m}^2 \text{s}^{-2} \), \( c_1 \) and \( c_2 \) are from Dahle et al. (1990b), \( c_4 = -0.0148 \) and \( \sigma \) is recommended as 0.65 (although this is from an earlier study and is not calculated in regression).
- Use data from Canada (Saguenay earthquake and Nahanni sequence) and Belgium (Roermond earthquake).
- Focal depths, \( h \), between 1 and 30 km with average 14.4 km.
- Assume peak ground acceleration equals pseudo-acceleration at 30 Hz due to few unclipped horizontal UK records and because instrument response of UK instruments means records unreliable above 30 Hz. Use only digital VME records for 30 Hz model.
- Note poorness of data due to UK data and other data being widely separated thus preventing a comparison between the two sets. Also means straightforward regression methods would be inadequate as there would be little control on shape of curves derived.
- Note earlier models over predict UK data.
- Use two-stage least squares method to give model 1. First stage fit only UK/Belgian data to find \( b \), in second stage use this value of \( b \) and use all data to find \( a \) and \( d \).
- Do not recommend model 1 for general use because too influenced by limitations of data to be considered reliable. Canadian data probably insufficient to anchor curves at small \( R \)/large \( M \) and extremely high Saguenay earthquake records carry undue weight.
- Use model of Dahle et al. (1990b) to get model 2. Fix \( c_1 \) and \( c_2 \) to those of Dahle et al. (1990b) and find \( c_4 \). Prefer this model.

3.95 Radu et al. (1994), Lungu et al. (1995a) & Lungu et al. (1996)

- Ground motion model is:
  \[ \ln \text{PGA} = c_1 + c_2M + c_3 \ln R + c_4h \]
  where PGA is in \( \text{cm}^2 \text{s}^{-2} \), \( c_1 = 5.432 \), \( c_2 = 1.035 \), \( c_3 = -1.358 \), \( c_4 = -0.0072 \) and \( \sigma = 0.397 \).
- Sites have different soil conditions, some medium and stiff sites and some very soft soil sites.
- Use some records from Moldova and Bulgaria.
- Focal depths, $h$, between 91 and 133 km.
- Records from free-field or from basements of buildings.
- Originally include data from a shallower (focal depth 79 km), smaller magnitude ($M_L = 6.1$, $M_w = 6.3$) earthquake with shorter return period than other three earthquakes, but exclude in final analysis.
- Originally do attenuation analysis for two orthogonal directions N45E (which is in direction of fault plane) and N35E (which is normal to fault plane). From this define $390^\circ$ circular sectors based roughly on tectonic regions, and calculate attenuation relations for each of these sectors as well as for all data. Find azimuthal dependence.
- Remove 1 to 3 anomalous records per sector.
- Remove the only record from the 4/3/1977 earthquake, because it has a strong influence on results, and repeat analysis using model $\ln \text{PGA} = b_1 + b_2M + b_3 \ln R$, find lower predicted PGA.
- Find slower attenuation in direction of fault plane compared with normal to fault plane.
- Find faster attenuation and larger standard deviation (by finding attenuation equations for two different earthquakes) for deeper focus and larger magnitude shocks.

3.96 Ramazi & Schenk (1994)

- Ground motion model is:

$$a_h = a_1(a_2 + d + H)^{a_5} \exp(a_6M_s)$$

$$H = |d - a_3|^{a_4}$$

where for horizontal peak acceleration $a_h$ is in $\text{cms}^{-2}$, $a_1 = 4000$, $a_2 = 20$, $a_3 = 16$ and $a_4 = 0.63$ for soil sites $a_5 = -2.02$ and $a_6 = 0.8$ and for rock sites $a_5 = -2.11$ and $a_6 = 0.79$ ($\sigma$ not given). For vertical peak acceleration on soil sites $a_v$ is in $\text{cms}^{-2}$ $a_1$ to $a_3$ are same as horizontal and $a_4 = 0.48$, $a_5 = -1.75$ and $a_6 = 0.53$ ($\sigma$ not given).

- Use two site categories (from original of four) for which derive two separate equations:

  1. Rock: mainly category (2) a) loose igneous rocks (tuffs), friable sedimentary rocks, foli-ated metamorphic rock and rocks which have been loosened by weathering, b) conglomerate beds, compacted sand and gravel and stiff clay (argillite) beds where soil thickness $> 60 \text{m}$ from bed rock. 29 records.
2. Soil: mainly category (4) a) soft and wet deposits resulting from high level of water table, b) gravel and sand beds with weak cementation and/or uncementated unindurated clay (clay stone) where soil thickness > 10 m from bed rock. 54 records.

- Focal depths between 10 and 69 km.
- Find equations using hypocentral distance but find that poor fit for Rudbar (Manjil) earthquake ($M_s = 7.7$) which conclude due to use of hypocentral rather than rupture distance.
- Find equations using rupture distance$^6$ for Rudbar (Manjil) earthquake and hypocentral distances for other earthquakes. Coefficients given above. They conclude that it is important that equations are derived using rupture distance rather than hypocentral distance because most destructive earthquakes rupture surface in Iran.
- Do not know physical meaning of $H$ term but find that it causes curves to fit data better.

3.97 Xiang & Gao (1994)

- Ground motion model is:
  $$A_p = ae^{bM_s}(R + \Delta)^c$$
  where $A_p$ is in $\text{cm}^2 s^{-2}$ and for combined Yunnan and W. N. American data $a = 1291.07$, $b = 0.5275$, $c = -1.5785$, $\Delta = 15$ and $\sigma = 0.5203$ (in terms of natural logarithm).
- All records from basement rock.
- Most Yunnan data from main and aftershocks of Luquan and Luncang-Gengma earthquakes.
- Records from Lancang-Gengma sequence corrected.
- Most Yunnan records with $3 \leq M_s \leq 5$ and $10 \leq R \leq 40$ km.
- To overcome difficulty due to shortage of large magnitude records and sample heterogeneous distribution in near and far fields use W. N. America data, because intensity attenuation is similar.
- Fit curves to Yunnan and Yunnan with W. N. American data. Find curve for combined data has lower variance and fit to observation data for large magnitudes is better (by plotting predicted and observed PGA).

3.98 Ambraseys (1995)

- Ground motion model is:
  $$\log a = A + BM_s + Cr + D \log r$$
  where $r^2 = d^2 + h_0^2$

$^6$ They state it is ‘…closest distance from the exposure of ruptured part of the fault…’ so may not be rupture distance.
3. Summary of published attenuation relations for peak ground acceleration

where $a$ is in $g$, for $4.0 \leq M \leq 7.4$: for horizontal PGA not including focal depth $A = -1.09$, $B = 0.238$, $C = -0.00050$, $D = -1$, $h_0 = 6.0$ and $\sigma = 0.28$, for vertical PGA not including focal depth $A = -1.34$, $B = 0.230$, $C = 0$, $D = -1$, $h_0 = 6.0$ and $\sigma = 0.27$, for horizontal PGA including focal depth $A = -0.87$, $B = 0.217$, $C = -0.00117$, $D = -1$, $h_0 = h$ and $\sigma = 0.26$ and for vertical PGA including focal depth $A = -1.10$, $B = 0.200$, $C = -0.00015$, $D = -1$, $h_0 = h$ and $\sigma = 0.26$.

- Reviews and re-evaluates distances, focal depths, magnitudes and PGAs because data from variety of sources with different accuracy and reliability. For $M_s > 6.0$ distances have acceptable accuracy but for $M_s < 6.0$ distance, depths and magnitudes are poorly known. Errors in locations for $M_s < 6.0$ still large with no foreseeable means of improving them. Use of $d_e$ for $M_s < 6.0$ justified because difference between $d_f$ and $d_e$ for small earthquakes is not larger than uncertainty in epicentre. Check and redetermine station locations; find large differences in excess of 15 km for some stations.

- Focal depths poorly determined. Revises 180 depths using S-start times (time between P and S-wave arrival).

- Focal depths $h < 26$ km; most (60%+) between 4 and 14 km.

- Does not use $M_L$ because no $M_L$ values for Algeria, Iran, Pakistan, Turkey and former USSR and unreliable for other regions. Does not use magnitude calculated from strong-motion records because magnitude calculation requires point source approximation to be valid. Conversion from $M_L$ to $M_s$ should not be done because of uncertainty in conversion which should be retained.

- Notes that $M_s$ results in nonlinear scaling on PGA with $M_w$ due to nonlinear relationship between $\log M_0$ and $M_s$.

- Uses PGAs in four forms: maximum values from accelerograms read by others (34%), from corrected records (30%), scaled directly from accelerograms (13%) and from digitised plots (23%). Notes potential bias in using both corrected and uncorrected PGAs but neglects it because small difference ($\lesssim 4\%$ for those checked). Excludes PGAs near trigger level because processing errors can be large. Some unfiltered digital records which require additional processing to simulate SMA-1 could be associated with larger differences ($\lesssim 10\%$).

- Excludes records from basements and ground floors of structures with more than 3 levels. Retains the few records from dam abutments and tunnel portals.

- Excludes records generated by close small magnitude earthquakes triggered by S-wave.

- Does not exclude records obtained at distances greater than shortest distance to an operational but not triggered instrument because of non-constant or unknown trigger levels and possible malfunctions of instruments.

• Splits data into five magnitude dependent subsets: $2.0 \leq M_s \leq 7.3$ (1260 records from 619 shocks), $3.0 \leq M_s \leq 7.3$ (1189 records from 561 shocks), $4.0 \leq M_s \leq 7.3$ (830 records from 334 shocks), $5.0 \leq M_s \leq 7.3$ (434 records from 107 shocks), and $3.0 \leq M_s \leq 6.0$ (976 records from 252 shocks). Calculates coefficients for each subset. Finds only small differences $\pm 15\%$ over distance range 1–200 km between predictions and uncertainties. Concludes results stable. Prefers results from subset with $4.0 \leq M_s \leq 7.3$.

• Finds it difficult to obtain some vertical accelerations due to low ground motion so ignores data from $>100$ km with PGA $<1\%g$ ($0.1$ ms$^{-2}$).

• Repeats regression using $r^2 = d^2 + h^2$. Finds depth important.

• Calculates using one-stage method; finds very similar results for $10 < d < 100$ km.

• Considers magnitude dependent function: $\log a = b_1 + b_2 M_s + b_3 r + b_4 [r + b_5 \exp(b_6 M_s)]$. Finds $b_5$ is zero so drops $b_3$ and repeats. Finds $b_5$ close to zero so magnitude dependent function not valid for this dataset.

• Local shear-wave velocity, $V_s$, profiles known for 44 stations (268 records from 132 earthquakes between 2.5 and 7.2) although only 14 from $>40$ km so barely sufficient to derive equation. Use 145 records from 50 earthquakes with $M_s > 4.0$ to fit $\log a = A + B M_s + C r + D \log r + E \log V_{s30}$, where $V_{s30}$ is average shear-wave velocity to reference depth of 30 m. Finds $C$ positive so constrain to zero. Find no reduction in standard deviation.

• Uses residuals from main equation to find $E$. Notes that should not be used because of small number of records. Considers different choices of reference depth; finds using between 5 and 10 m leads to higher predicted amplifications. Notes better to use $V_{s30}$ because no need for subjective selection of categories.

3.99 Dahle et al. (1995)

• Ground motion model is:

$$\ln A = c_1 + c_2 M_w + c_3 \ln R + c_4 R + c_5 S$$

with: $R = \sqrt{r^2 + r_h^2}$

where $A$ is in ms$^{-2}$, $c_1 = -1.579$, $c_2 = 0.554$, $c_3 = -0.560$, $c_4 = -0.0032$, $c_5 = 0.326$, $r_h = 6$ and $\sigma = 0.3535$

• Use records from Costa Rica, Mexico, Nicaragua and El Salvador. Only Mexican earthquakes with $M_w \geq 6.5$ were used.

• Use two site categories:

$S = 0$ Rock: 92 records
$S = 1$ Soil: 88 records
3. Summary of published attenuation relations for peak ground acceleration

- Use a Bayesian one-stage regression method (Ordaz et al., 1994) to yield physically possible coefficients.
- Consider tectonic type: subduction or shallow crustal but do not model.
- Find no significant difference between Guerrero (Mexico) and other data.
- Find no significant difference between subduction and shallow crustal data.

3.100 Lee et al. (1995)

- Ground motion models are (if define site in terms of local geological site classification):

\[
\log a_{\text{max}} = M + \text{Att}(\Delta/L, M, T) + b_1 M + b_2 s + b_3 v + b_4 + b_5 M^2 + \sum_{i} b_i S_i L + b_70 r R + b_71 (1-r) R
\]

or (if define site in terms of depth of sediment):

\[
\log a_{\text{max}} = M + \text{Att}(\Delta/L, M, T) + b_1 M + b_2 h + b_3 v + b_4 + b_5 M^2 + \sum_{i} b_i S_i L + b_70 r R + b_71 (1-r) R
\]

where:

\[
\text{Att}(\Delta, M, T) = \begin{cases} 
  b_0 \log_{10} \Delta & \text{for } R \leq R_{\text{max}} \\
  b_0 \log_{10} \Delta_{\text{max}} - (R - R_{\text{max}})/200 & \text{for } R > R_{\text{max}}
\end{cases}
\]

\[
\Delta = S \left( \frac{\ln \left( R^2 + H^2 + S^2 \right)}{R^2 + H^2 + S^2} \right)^{-1/2}
\]

\[
\Delta_{\text{max}} = \Delta(R_{\text{max}}, H, S)
\]

\[
R_{\text{max}} = \frac{1}{2} (-\beta + \sqrt{\beta^2 - 4H^2})
\]

- Use four types of site parameter:
  - Local geological site classification (defined for all records):
    - \( s = 0 \) Sites on sediments.
    - \( s = 1 \) Intermediate sites.
    - \( s = 2 \) Sites on basement rock.
  - Depth of sediments from surface to geological basement rock beneath site, \( h \) (defined for 1675 records out of 1926).

\( S_0 \) is correlation radius of source function and can be approximated by \( S_0 \sim \beta T/2 \) (for PGA assume \( T \approx 0.1 \) s so use \( S_0 = 0.1 \) km), \( \beta \) is shear-wave velocity in source region, \( T \) is period, \( S \) is ‘source dimension’ approximated by \( S = 0.2 \) for \( M < 3 \) and \( S = -25.34 + 8.51 M \) for \( 3 \leq M \leq 7.25 \), \( L \) is rupture length of earthquake approximated by \( L = 0.01 \times 10^{0.5 M} \) km and \( v \) is component direction (\( v = 0 \) for horizontal 1 for vertical). Different \( b_0, b_{70} \) and \( b_{71} \) are calculated for five different path categories. The coefficients are not reported here due to lack of space.
Local soil type parameter describes average soil stiffness in top 100–200 m (defined for 1456 records out of 1926):

\( s_L = 0 \) ‘Rock’ soil sites \( \Rightarrow S^1_L = 1, S^2_L = 0 \) and \( S^3_L = 0 \). Characterises soil up to depth of less than 10 m.

\( s_L = 1 \) Stiff soil sites \( \Rightarrow S^1_L = 1, S^2_L = 0 \) and \( S^3_L = 0 \) (shear-wave velocities \( < 800 \text{ ms}^{-1} \) up to depth of 75–100 m).

\( s_L = 2 \) Deep soil sites \( \Rightarrow S^2_L = 1, S^1_L = 0 \) and \( S^3_L = 0 \). (shear-wave velocities \( < 800 \text{ ms}^{-1} \) up to depth of 150–200 m).

\( s_L = 3 \) Deep cohesionless soil sites \( \Rightarrow S^3_L = 1, S^1_L = 0 \) and \( S^2_L = 0 \) (only use for one site with 10 records).

Average soil velocity in top 30 m, \( v_L \) (if unavailable then use soil velocity parameter, \( s_T \)) (defined for 1572 records out of 1926):

Soil type A \( v_L > 750 \text{ ms}^{-1} \).
Soil type B \( 360 \text{ ms}^{-1} < v_L \leq 750 \text{ ms}^{-1} \).
Soil type C \( 180 \text{ ms}^{-1} < v_L \leq 360 \text{ ms}^{-1} \).
Soil type D \( v_L \leq 180 \text{ ms}^{-1} \).

- Only include records for which significant subset of site parameters \((s, h, s_L, v_L)\) exist.
- Almost all earthquakes have focal depths \( H \leq 15 \text{ km} \); all focal depths \( H \leq 43 \text{ km} \).
- Use records from 138 aftershocks of Imperial Valley earthquake (15/10/1979), which contribute most of \( M \leq 3 \) records.
- Use records from 109 earthquakes with \( M \leq 3 \).
- Use free-field records.
- Characterise path by two methods:
  - Fraction of wave path travelled through geological basement rock measured at surface, from epicentre to station, \( 0 \leq r \leq 1 \).
  - Generalised path type classification:
    1. Sediments to sediments.
    2. Rock-to-sediments, vertically.
    3. Rock-to-sediments, horizontally.
    5. Rock-to-rock through sediments, vertically.
    7. Rock-to-sediments though rock and sediments, horizontally.
    8. Rock-to-rock through sediments, horizontally.

Due to lack of data combine path types 2 and 6 in new category 2’, combine path types 3 and 7 in new category 3’, combine path types 4, 5 and 8 in new category 4’ (when \( r \neq 1 \)) and combine 4, 5 and 8 in new category 5’ (when \( r = 1 \)).
• Plot PGA against magnitude and distance to get surface by interpolation. Plot without smoothing and with light and intense smoothing. Find for small magnitude \((M \approx 3-4)\) earthquakes attenuation is faster than for large magnitude \((M \approx 6-7)\) earthquakes.

• Use a multi-step residue regression method. First fit \(\log a_{\text{max}} = M + \text{Att}(\Delta, M, T) + b_1 M + b_2 s + b_3 v + b_4 + b_5 M^2\) (or \(\log a_{\text{max}} = M + \text{Att}(\Delta, M, T) + b_1 M + b_2 h + b_3 v + b_4 + b_5 M^2\)) and calculate residuals \(\epsilon = \log a_{\text{max}} - \log a_{\text{max}}\) where \(a_{\text{max}}\) is estimated PGA and \(a_{\text{max}}\) is recorded PGA. Fit \(\epsilon = (b_7^{(-1)} S_L^{(-1)} + b_7^{(0)} S_L^{(0)} + b_7^{(1)} S_L^{(1)} + b_7^{(2)} S_L^{(2)} + b_7^{(3)} S_L^{(3)}\) where \(S_L = 1\) if \(s_L = i\) and \(S_L = 0\) otherwise. Next calculate residuals from last stage and fit \(\epsilon = b_0 \log_{10}(\Delta/L) + b_1 + b_6 \sigma R + b_6 (1 - \sigma) R\) for each of the five path type groups (1' to 5'). Lastly combine all the individual results together into final equation.

• Note that \(b_{70}\) and \(b_{71}\) can only be applied for \(R \lesssim 100\,\text{km}\) where data is currently available. For \(R \gtrsim 100\,\text{km}\) the predominant wave type changes to surface waves and so \(b_{70}\) and \(b_{71}\) do not apply.

3.101 Lungu et al. (1995b)

• Study almost identical to Radu et al. (1994), see Section 3.95, but different coefficients given: \(c_1 = 3.672, c_2 = 1.318, c_3 = -1.349, c_4 = -0.0093\) and \(\sigma = 0.395\).

3.102 Molas & Yamazaki (1995)

• Ground motion model is:

\[
\log y = b_0 + b_1 M + b_2 r + b_3 \log r + b_4 h + c_i
\]

where \(y\) is in \(\text{cm/s}^2\), \(b_0 = 0.206, b_1 = 0.477, b_2 = -0.00144, b_3 = -1, b_4 = 0.00311,\) \(\sigma = 0.276\) and \(c_i\) is site coefficient for site \(i\) (use 76 sites), given in paper but are not reported here due to lack of space.

• Records from accelerometers on small foundations detached from structures; thus consider as free-field.

• Exclude records with one horizontal component with PGA < 1 \(\text{cm/s}^2\) because weaker records not reliable due to resolution \((\pm 0.03\,\text{cm/s}^2)\) of instruments.

• Exclude earthquakes with focal depths equal to 0 km or greater than 200 km, due to lack of such data. Depths (depth of point on fault plane closest to site), \(h\), between about 1 km to 200 km.

• Apply a low-cut filter with cosine-shaped transition from 0.01 to 0.05 Hz.

• Positive correlation between magnitude and distance so use two-stage method.
• Note different definition for $M_{JMA}$ for focal depths > 60 km.

• Firstly do preliminary analysis with $b_4 = 0$ and no site coefficients; find $b_2$ is positive so constrain to 0 but find $b_3 < -1.0$ so constrain $b_3$ to $-1.0$ and unconstrain $b_2$. Find linear dependence in residuals on $h$ especially for $h < 100$ km. Find significant improvement in coefficient of determination, $R^2$, using terms $b_4 h$ and $c$.

• Find singularity in matrices if apply two-stage method, due to number of coefficients, so propose a iterative partial regression method.

• Also separate data into five depth ranges (A: $h = 0.1$ to 30 km, 553 records from 111 earthquakes; B: $h = 30$ to 60 km, 778 records from 136 earthquakes; C: $h = 60$ to 90 km, 526 records from 94 earthquakes; D: $h = 90$ to 120 km, 229 records from 31 earthquakes; E: $h = 120$ to 200 km, 112 records from 19 earthquakes) and find attenuation equations for each range. Note results from D & E may not be reliable due to small number of records. Find similar results from each group and all data together.

• Find weak correlation in station coefficients with soil categories, as defined in Iwasaki et al. (1980), but note large scatter.

3.103 Sarma & Free (1995)

• Ground motion model is:

$$\log(a_h) = C_1 + C_2 M + C_3 M^2 + C_4 \log(R) + C_5 R + C_6 S$$

where $R = \sqrt{d^2 + h_0^2}$

where $a_h$ is in g, $C_1 = -3.4360$, $C_2 = 0.8532$, $C_3 = -0.0192$, $C_4 = -0.9011$, $C_5 = -0.0020$, $C_6 = -0.0316$, $h_0 = 4.24$ and $\sigma = 0.424$.

• Use two site categories:

$S = 0$ Rock

$S = 1$ Soil

• Use one-stage method because of the predominance of earthquakes with single recordings in the set.

• Note that it is very important to choose a functional form based as much as possible on physical grounds because the data is sparse or non-existent for important ranges of distance and magnitude.

• Carefully verify all the distances in set.

• Use focal depths from (in order of preference): special reports (such as aftershock monitoring), local agencies and ISC and NEIS determinations. Focal depths $< 30$ km.
• Do not use $M_L$ or $m_b$ because of a variety of reasons. One of which is the saturation of $M_L$ and $m_b$ at higher magnitudes ($M_L, m_b > 6$).

• If more than one estimate of $M_w$ made then use average of different estimates.

• Use PGAs from: a) digital or digitised analogue records which have been baseline corrected and filtered, b) data listings of various agencies and c) other literature. Difference between PGA from different sources is found to be small.

• Also derive equations assuming $C_3 = 0$ (using rock and soil records and only soil records) and $C_3 = 0, C_4 = -1$ and $C_6 = 0$ (using only rock records).

• Include records from Nahanni region and find similar results.

• Also derive equations for Australia (115 records from 86 earthquakes, $2.4 \leq M_w \leq 6.1$, $1 \leq d_e \leq 188$ km) and N. E. China (Tangshan) (193 records from 64 earthquakes, $3.5 \leq M_w \leq 7.5$, $2 \leq d_e \leq 199$ km). Find considerable difference in estimated PGAs using the equations for the three different regions.


• Ground motion model is:
\[
\log y = C_1' + C_2 M + C_4 \log r + C_A S_A + C_S S_S
\]
where $r = \sqrt{d^2 + h_0^2}$

where $y$ is in g, $C_1' = -1.48$, $C_2 = 0.266$, $C_4 = -0.922$, $C_A = 0.117$, $C_S = 0.124$, $h_0 = 3.5$ and $\sigma = 0.25$.

• Use four site conditions but retain three (because only three records from very soft (L) soil which combine with soft (S) soil category):

R Rock: $V_s > 750$ ms$^{-1}$, $\Rightarrow S_A = 0, S_S = 0$, 106 records.

A Stiff soil: $360 < V_s \leq 750$ ms$^{-1}$, $\Rightarrow S_A = 1, S_S = 0$, 226 records.

S Soft soil: $180 < V_s \leq 360$ ms$^{-1}$, $\Rightarrow S_A = 0, S_S = 1$, 81 records.

L Very soft soil: $V_s \leq 180$ ms$^{-1}$, $\Rightarrow S_A = 0, S_S = 1$, 3 records.

• Lower limit of $M_s = 4.0$ because smaller earthquakes are generally not of engineering significance.

• Focal depths less than 30 km, 81% between 5 and 15 km.

• Note for some records distances have uncertainty of about 10 km.

• Most records from distances less than about 40 km.

• For some small events need to estimate $M_s$ from other magnitude scales.
• Most records from free-field stations although some from basements or ground floors of relatively small structures, and tunnel portals. Do not exclude records from instruments beyond cutoff distance because of limited knowledge about triggered level.

• All uncorrected records plotted, checked and corrected for spurious points and baseline shifts.

• Uniform correction procedure was applied for all records. For short records (< 5s) a parabolic adjustment was made, for long records (> 10s) filtering was performed with pass band 0.20 to 25 Hz and for intermediate records both parabolic and filtering performed and the most realistic record was chosen. Instrument correction not applied due to limited knowledge of instrument characteristics.

• Also analyze using one-stage method, note results comparable.


• Based on Ambraseys et al. (1996), see Section 3.104.

• Coefficients are: $C'_1 = -1.74, C_2 = 0.273, C_4 = -0.954, C_A = 0.076, C_S = 0.058, h_0 = 4.7$ and $\sigma = 0.26$.

3.106 Aydan et al. (1996)

• Ground motion model is:

$$a_{\text{max}} = a_1 [\exp(a_2 M_s) \exp(a_3 R) - a_4]$$

where $a_{\text{max}}$ is in gal, $a_1 = 2.8, a_2 = 0.9, a_3 = -0.025$ and $a_4 = 1$ ($\sigma$ is not given).

• Most records from $d_h > 20$ km.

• Note that data from Turkey is limited and hence equation may be refined as amount of data increases.

• Also give equation to estimate ratio of vertical PGA ($a_v$) to horizontal PGA ($a_h$): $a_v/a_h = 0.217 + 0.046M_s$ ($\sigma$ is not given).

3.107 Bommer et al. (1996)

• Ground motion model is:

$$\ln(A) = a + bM + d\ln(R) + qh$$

where $h$ is focal depth, $A$ is in g, $a = -1.47, b = 0.608, d = -1.181, q = 0.0089$ and $\sigma = 0.54$.

• Only use subduction earthquakes.
• Do not recommend equation used for hazard analysis, since derive it only for investigating equations of Climent et al. (1994).


• Ground motion model is:

\[ \ln Y = a + bM + d \ln(R + c_1 \exp(c_2M)) + eF \]

where \( Y \) is in g, for site category B: \( a = -2.342699, b = 1.091713, c_1 = 0.413033, c_2 = 0.623255, d = -1.751631, e = 0.087940 \) and \( \sigma = 0.427787 \) and for site category C: \( a = -2.353903, b = 0.838847, c_1 = 0.305134, c_2 = 0.640249, d = -1.310188, e = -0.051707 \) and \( \sigma = 0.416739 \).

• Use four site categories, \( \bar{V}_s \) is shear-wave velocity in upper 100 ft (30 m):
  
  A Rock: \( \bar{V}_s \geq 2500 \text{ fps} (\bar{V}_s \geq 750 \text{ ms}^{-1}) \), 33 records
  B Soft rock or stiff soil: \( 1200 \leq \bar{V}_s \leq 2500 \text{ fps} (360 \leq \bar{V}_s \leq 750 \text{ ms}^{-1}) \), 88 records
  C Medium stiff soil: \( 600 \leq \bar{V}_s < 1200 \text{ fps} (180 \leq \bar{V}_s < 360 \text{ ms}^{-1}) \), 101 records
  D Soft clay: \( \bar{V}_s < 600 \text{ fps} (\bar{V}_s < 180 \text{ ms}^{-1}) \), 16 records

• Use two source mechanisms: reverse (R) \( \Rightarrow F = 1 \), 81 records and strike-slip (S) \( \Rightarrow F = 0 \), 157 records. Most (77) reverse records from \( M_s \leq 6.7 \).

• Most (231) records from small building (up to 3 storeys in height) or from instrument shelters to reduce effect of soil-structure interaction. 6 records from 6 storey buildings and 1 record from a 4 storey building, included because lack of data in site or distance range of these records. Structures thought not to appreciably affect intermediate or long period and at large distances short period ground motion more greatly diminished than long period so less effect on predictions.

• Exclude records from Eureka-Ferndale area in N. California because may be associated with subduction source, which is a different tectonic regime than rest of data. Also excluded Mammoth Lake records because active volcanic region, atypical of rest of California.

• Include one record from Tarzana Cedar Hills although exclude a different record from this station due to possible topographic effects.

• Most records between \( 6 \leq M_s \leq 7.25 \) and \( 10 \leq R \leq 80 \text{ km} \).

• Apply weighted regression separately for site category B and C. Data space split into 4 magnitude (6.0–6.25, 6.25–6.75, 6.75–7.25, 7.25+) and 5 distance intervals (\( \leq 10 \text{ km}, 10–20 \text{ km}, 20–40 \text{ km}, 40–80 \text{ km}, 80 \text{ km}+ \)). Each recording within bin given same total weight.

• So that \( Y \) is increasing function of \( M \) and decreasing function of \( R \) for all positive \( M \) and \( R \) apply constraints. Define \( g = b/d \) and \( h = -(g + c_2) \), then rewrite equation \( \ln Y = \)
3. Summary of published attenuation relations for peak ground acceleration

\[ a + d \{ gM + \ln[R + c_1 \exp(c_2 M)]} \} + eF \]  and apply constraints \( g \leq 0, \ d \leq 0, \ c \geq 0, \ c_2 \geq 0 \) and \( h \geq 0 \).

- Check plots of residuals (not shown in paper), find uniform distribution.
- Find \( e \) not significantly different than 0 and inconsistency in results between different soil classes make it difficult to attach any significance to fault type.
- Lack of records for A and D site categories. Find scale factors \( k_1 = 0.998638 \) and \( k_2 = 1.200678 \) so that \( Y_A = k_1 Y_B \) and \( Y_D = k_2 Y_C \), where \( Y_S \) is predicted ground motion for site class \( S \). Find no obvious dependence of \( k_1 \) or \( k_2 \) on acceleration from examining residuals. Find \( k_1 \) and \( k_2 \) not significantly different than 1.
- Note limited data for \( R < 10 \) km, advise caution for this range.
- Note equation developed to estimate site-amplification factors not for seismic hazard analysis.

\[ \text{3.109 Free (1996) & Free et al. (1998)} \]

- Ground motion model is:
  \[
  \log(Y) = C_1 + C_2 M + C_3 M^2 + C_4 \log(R) + C_5 (R) + C_6 (S)
  \]
  \[
  R = \sqrt{d^2 + h^2}
  \]
  where \( Y \) is in \( g \), for \( M > 1.5 \) using acceleration and velocity records, for horizontal PGA
  \( C_1 = -4.2318, \ C_2 = 1.1962, \ C_3 = -0.0651, \ C_4 = -1, \ C_5 = -0.0019, \ C_6 = 0.261, \ h_0 = 2.9 \)
  and \( \sigma = 0.432 \) and for vertical PGA
  \( C_1 = -4.1800, \ C_2 = 1.0189, \ C_3 = -0.0404, \ C_4 = -1, \ C_5 = -0.0019, \ C_6 = 0.163, \ h_0 = 2.7 \) and \( \sigma = 0.415 \).
- Use two site categories:
  \( S = 0 \) Rock, H: 470 records, V: 395 records.
  \( S = 1 \) Soil, H: 88 records, V: 83 records.
  Note that not most accurate approach but due to lack of site information consider this technique makes most consistent use of available information.
- Select data using these criteria:
  1. Epicentre and recording station must be within the stable continental region boundaries defined by Johnston et al. (1994) because a) such regions form end of spectrum of regions described by 'intraplate' and hence allows differences with interplate regions to be seen, b) they are clearly delineated regions and c) intraplate oceanic crust is excluded.
  2. Minimum magnitude level \( M = 1.5 \).
  3. Use records from dam abutments and downstream free-field sites but excludes records from crests, slopes, toes, galleries, or basements.
4. Use records from acceleration and velocity instruments.
5. Specify no minimum PGA.
6. Specify no maximum source distance. Do not exclude records from distances greater than shortest distance to a non-triggered station.

- Data from Australia, N.W. Europe, Peninsular India and E. N. America.
- Focal depths, $2 \leq h \leq 28\, \text{km}$.
- Most records from $M < 4.0$.
- Visually inspect all records including integrated velocities and displacements, identify and remove traces dominated by noise, identify and correct transient errors (spikes, ramps, linear sections, back time steps and clipped peaks), identify scaling errors, identify and remove multiple event records. Linear baseline correct and elliptically filter with cut-off 0.25 to 0.5 Hz (determine frequency by visual inspection of adjusted record) and 33 to 100 Hz (generally pre-determined by Nyquist frequency).
- Large proportion of records from velocity time histories which differentiate to acceleration. Test time domain method (central difference technique) and frequency domain method; find very similar results. Use time domain method.
- Distribution with respect to magnitude did not allow two-stage regression technique.
- In many analyses distribution of data with respect to distance did not allow simultaneous determination of coefficients $C_4$ and $C_5$, for these cases constrain $C_4$ to $-1$.
- Test effect of minimum magnitude cut-off for two cut-offs $M = 1.5$ and $M = 3.5$. Find if include data from $M < 3.5$ then there is substantial over prediction of amplitudes for $d < 10\, \text{km}$ for large magnitudes unless include $C_3$ term. $C_3$ effectively accounts for large number of records from small magnitudes and so predictions using the different magnitude cut-offs are very similar over broad range of $M$ and $d$.
- Try including focal depth, $h$, explicitly by replacing $h_0$ with $h$ because $h_0$ determined for whole set (which is dominated by small shocks at shallow depths) may not be appropriate for large earthquakes. Find improved fit at small distances but it does not result in overall improvement in fit ($\sigma$ increases); this increase thought due to large errors in focal depth determination.
- Find larger standard deviations than those found in previous studies which note may be due to intrinsic differences between regional subsets within whole set. Repeat analysis separately for Australia (for horizontal and vertical), N. America (for horizontal and vertical) and N.W. Europe (horizontal); find reduced standard deviations (although still large), $C_5$ varies significantly between 3 regions.
- Repeat analysis excluding velocity records.
- Also repeat analysis using only rock records.
3. Summary of published attenuation relations for peak ground acceleration

3.110 Ohno et al. (1996)

- Ground motion model is:

\[ \log S(T) = a(T)M - \log X_{eq} - b(T)X_{eq} + c(T) + q\Delta s(T) \]

where \( S(0.02) \) is in gal, \( a(0.02) = 0.318 \), \( b(0.02) = 0.00164 \) and \( c(0.02) = 1.597 \) (\( \Delta s(0.02) \) and \( \sigma \) only given in graphs).

- Use two site conditions:

  \( q = 0 \) Pre-Quaternary: Rock (sandstone, siltstone, shale, granite, mudstone, etc.); thickness of surface soil overlying rock is less than 10 m; shallow soil or thin alluvium, 160 records. S-wave velocities \( > 600 \text{ ms}^{-1} \).

  \( q = 1 \) Quaternary: Soil (alluvium, clay, sand, silt, loam, gravel, etc.), 336 records. S-wave velocities \( \leq 600 \text{ ms}^{-1} \).

Exclude records from very soft soil such as bay mud or artificial fill because few such records and ground motions may be strongly affected by soil nonlinearity.

- Use equivalent hypocentral distance, \( X_{eq} \), because strong motion in near-source region affected from points other than nearest point on fault plane.

- Use portion of record after initial S-wave arrival.

- Approximates PGA by spectral acceleration for period of 0.02 s and 5\% damping.

- Plot the amplitude factors from first stage against \( M_w \); find well represented by linear function.

3.111 Romeo et al. (1996)

- Ground motion model is:

\[ \log \text{PHA} = a_1 + a_2 M_w - \log(d_f^2 + h^2)^{1/2} + a_3 S \]

where PHA is in g, \( a_1 = -1.870 \pm 0.182 \), \( a_2 = 0.366 \pm 0.032 \), \( a_3 = 0.168 \pm 0.045 \), \( h = 6 \text{ km} \) and \( \sigma = 0.173 \) for \( d_f \) and \( a_1 = -2.238 \pm 0.200 \), \( a_2 = 0.438 \pm 0.035 \), \( a_3 = 0.195 \pm 0.049 \), \( h = 5 \text{ km} \) and \( \sigma = 0.190 \) for \( d_e \).

- Use two site categories:

  \( S = 0 \) Rock or stiff soils and deep alluvium.

  \( S = 1 \) All other sites.

3. Summary of published attenuation relations for peak ground acceleration


- Ground motion model is:
  \[
  \log(A_p/g) = b_1 + b_2M_s + b_3 \log r + b_4r \\
  \text{where } r = (d^2 + h_0^2)^{0.5}
  \]
  where \( A_p \) is in g, using both horizontal components \( b_1 = -1.617, b_2 = 0.248, b_3 = -0.5402, b_4 = -0.00392, h_0 = 3.2 \) and \( \sigma = 0.26 \) and for larger horizontal component \( b_1 = -1.507, b_2 = 0.240, b_3 = -0.542, b_4 = -0.00397, h_0 = 3.0 \) and \( \sigma = 0.26 \).

- Consider two soil categories but do not model:
  1. Rock
  2. Soil

Classify sites without regard to depth and shear-wave velocity of deposits.

- Most records from W. USA but many from Europe and Middle East.

- Focal depths between 2 and 29 km.

- Records from instruments on ground floor or in basements of buildings and structures up to 3 storeys and at free-field sites, regardless of topography.

- Records baseline corrected and low-pass filtered using elliptic filter.

3.113 Singh et al. (1996)

- Ground motion model is:
  \[
  \log_{10} \text{AGM} = b_1 + 0.31M - b_3 \log R \\
  \text{where AGM is in } \text{cms}^{-2}, b_1 = 1.14 \text{ and } b_3 = -0.615 (\sigma \text{ is not given}). \text{ Note there are typographical errors in the abstract.}
  \]

- Data from three earthquakes with \( m_b = 5.7 \), one with \( m_b = 5.8 \) and one with \( m_b = 7.2 \).

- Adopt magnitude scaling coefficient (0.31) from Boore (1983).


- Ground motion model is:
  \[
  \log_{10} Y = b_1 + b_2(M - 6) + b_3(M - 6)^2 + b_4R + b_5 \log_{10} R + b_6 \Gamma \\
  \text{where } R = \sqrt{r_j^2 + h^2}
  \]
  where \( Y \) is in g, \( b_1 = 0.156, b_2 = 0.229, b_3 = 0, b_4 = 0, b_5 = -0.945, b_6 = 0.077, h = 5.57, \sigma = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2} \text{ where } \sigma_1 = 0.216, \sigma_2 = 0, \text{ for randomly orientated component } \sigma_3 = 0.094 \text{ and for geometric mean } \sigma_3 = 0.
• Use two site categories (following classification of Joyner & Boore (1981)):

\( \Gamma = 0 \) Rock: 35 records
\( \Gamma = 1 \) Soil: 93 records

• Applicable for extensional regimes, i.e. those regions where lithosphere is expanding areally.

• Reject records from structures of more than two storeys or from deeply embedded basements or those which triggered on S wave.

• Include records from those instruments beyond cutoff distance, i.e. beyond first instrument which did not trigger.

• Correction technique based on uniform correction and processing. Determine passband for filtering based on visual inspection of Fourier amplitude spectra and doubly-integrated displacements. Apply instrument correction.

• Not enough data to be able to find all coefficients so use \( b_2 \) and \( b_3 \) from Boore et al. (1994a)

• Note that should only be used in distance range 0 to 70 km because further away ground motions tend to be over predicted.


• Ground motion model is:

\[
\text{Acc} = \exp(b) \exp(b_M)(R_h + C)^{b_R}
\]

where \( R_h^2 = (R_e/\rho)^2 + h^2 \)

and \( \rho = \sqrt{1 + \tan^2\alpha} \)

where \( \text{Acc} \) is in cm/s\(^2\), \( \alpha \) is the azimuth of the site with respect to energy propagation pattern, \( b = 3.49556, b_M = 1.35431, C = 30, b_R = -1.58527, a = 1.2 \) and \( \sigma = 0.48884 \) (definitions of \( t \) and \( g \) are not given).

• Correct PGAs for local site effects so that PGAs used correspond to a site with a shear-wave velocity of 700 m/s. Do not state how this is performed.

• Most records from SMA-1s.

• Not all records from free-field.

• Records from strong intermediate depth earthquakes in Vrancea region.

• Focal depths, \( 89.1 \leq h \leq 131 \) km.

• For each of the four earthquakes, calculate coefficients in equation \( \ln \text{Acc} = b_0 + b_1 \ln(R_e/\rho) \), the main direction of energy propagation and the relation between the semi-axes of the ellipse in two orthogonal directions (\( a : b \)).
3. Summary of published attenuation relations for peak ground acceleration

- Also calculate coefficients in equation \( \ln \text{Acc} = b + b_M M + b_R \ln(R_e + C) \) for different azimuth by normalising the values of \( R_e/\rho \) by the azimuth. Give coefficients for Bucharest, Valeni and Cerna Voda.

- Note that uncertainty is high and suggest this is because of distribution of data with respect to \( M, R_e \) and \( h \), the use of data processed in different ways, soil-structure interaction and the use of an approximate correction method for local site effects.


- Ground motion model (horizontal component) is:

  \[
  \ln A_H = a_1 + a_2 M + a_3 \ln \sqrt{R_{\text{SEIS}}^2 + [a_4 \exp(a_5 M)]^2} + [a_6 + a_7 \ln R_{\text{SEIS}} + a_8 M] F + [a_9 + a_{10} \ln R_{\text{SEIS}}] S_{\text{SR}} + [a_{11} + a_{12} \ln R_{\text{SEIS}}] S_{\text{HR}} + f_A(D)
  \]

  \[
  f_A(D) = \begin{cases} 
  0 & \text{for } D \geq 1 \text{ km} \\
  ([a_{11} + a_{12} \ln(R_{\text{SEIS}})] - [a_9 + a_{10} \ln(R_{\text{SEIS}})] S_{\text{SR}})(1 - D)(1 - S_{\text{HR}}) & \text{for } D < 1 \text{ km}
  \end{cases}
  \]

  where \( A_H \) is in g, \( a_1 = -3.512, a_2 = 0.904, a_3 = -1.328, a_4 = 0.149, a_5 = 0.647, a_6 = 1.125, a_7 = -0.112, a_8 = -0.0957, a_9 = 0.440, a_{10} = -0.171, a_{11} = 0.405, a_{12} = -0.222, \sigma = 0.55 \) for \( A_H < 0.068 \text{ g}, \sigma = 0.173 - 0.140 \ln(A_H) \) for \( 0.068 \text{ g} \leq A_H \leq 0.21 \text{ g} \) and \( \sigma = 0.39 \) for \( A_H > 0.21 \text{ g} \) (when expressed in terms of acceleration) and \( \sigma = 0.889 - 0.0691 M \) for \( M < 7.4 \) and \( \sigma = 0.38 \) for \( M \geq 7.4 \) (when expressed in terms of magnitude).

Ground motion model (vertical component) is:

\[
\ln A_V = \ln A_H + b_1 + b_2 M + b_3 \ln[R_{\text{SEIS}} + b_4 \exp(b_5 M)] + b_6 \ln[R_{\text{SEIS}} + b_7 \exp(b_8 M)] + b_9 F
\]

where \( A_V \) is in g, \( b_1 = -1.58, b_2 = -0.10, b_3 = -1.5, b_4 = 0.079, b_5 = 0.661, b_6 = 1.89, b_7 = 0.361, b_8 = 0.576, b_9 = -0.11 \) and \( \sigma_V = \sqrt{\sigma^2 + 0.36^2} \) (where \( \sigma \) is standard deviation for horizontal PGA prediction).

- Uses three site categories:

  - \( S_{\text{SR}} = 0, S_{\text{HR}} = 1 \) Hard rock: primarily Cretaceous and older sedimentary deposits, metamorphic rock, crystalline rock and hard volcanic deposits (e.g. basalt).
  - \( S_{\text{SR}} = 1, S_{\text{HR}} = 0 \) Soft rock: primarily Tertiary sedimentary deposits and soft volcanic deposits (e.g. ash deposits).
  - \( S_{\text{SR}} = 0, S_{\text{HR}} = 0 \) Alluvium or firm soil: firm or stiff Quaternary deposits with depths greater than 10 m.

  Also includes sediment depth \( (D) \) as a variable.
• Restricts to near-source distances to minimize influence of regional differences in crustal attenuation and to avoid complex propagation effects that have been observed at longer distances.

• Excludes recordings from basement of buildings greater than two storeys on soil and soft rock, greater than five storeys on hard rock, toe and base of dams and base of bridge columns. Excludes recordings from shallow and soft soil because previous analyses showed such sites have accelerations significantly higher than those on deep, firm alluvium. Include records from dam abutments because comprise a significant number of rock recordings and due to stiff foundations are expected to be only minimally affected by dam. Some of these could be strongly affected by local topography.

• Includes earthquakes only if they had seismogenic rupture within shallow crust (depths less than about 25 km). Includes several large, shallow subduction interface earthquakes because previous studies found similar near-source ground motions to shallow crustal earthquakes.

• Includes only earthquakes with $M$ about 5 or larger to emphasize those ground motions of greatest engineering interest and limit analysis to more reliable, well-studied earthquakes.

• Notes that distance to seismogenic rupture is a better measure than distance to rupture or distance to surface projection because top layer of crust is non-seismogenic and will not contribute to ground motion. Give estimates for average depth to top of seismogenic rupture for hypothetical earthquakes.

• Considers different focal mechanisms: reverse (H:6, V:5), thrust (H:9, V:6), reverse-oblique (H:4, V:2) and thrust-oblique (0), total (H:19, V:13) ⇒ $F = 1$ (H:278 records, V:116 records) (reverse have a dip angle greater than or equal to $45^\circ$), strike-slip (H:27, V:13) ⇒ $F = 0$ (H:367 records, V:109 records) (strike-slip have an absolute value of rake less than or equal to $22.5^\circ$ from the horizontal as measured along fault plane). There is only one normal faulting earthquakes in set of records (contributing four horizontal records) so difference is not modelled although $F = 0.5$ given as first approximation (later revised to $F = 0$).

• Mostly W. USA with 20 records from Nicaragua (1) Mexico (5), Iran (8), Uzbekistan (1), Chile (3), Armenia (1) and Turkey (1).

• Does regression firstly with all data. Selects distance threshold for each value of magnitude, style of faulting and local site condition such that the 16th percentile estimate of $A_H$ was equal to 0.02 g (which corresponds to a vertical trigger of about 0.01 g). Repeats regression repeated only with those records within these distance thresholds. Avoids bias due to non-triggering instruments.

• Finds dispersion (uncertainty) to be dependent on magnitude and PGA, models as linear functions. Finds better fit for PGA dependency.
3.117 **Munson & Thurber (1997)**

- Ground motion model is:
  \[
  \log_{10} \text{PGA} = b_0 + b_1(M - 6) + b_2r - \log_{10} r + b_4S
  \]
  where \( r = \sqrt{d^2 + h^2} \)

  PGA is in g, \( b_0 = 0.518, b_1 = 0.387, b_2 = -0.00256, b_4 = 0.335, h = 11.29 \) and \( \sigma = 0.237 \).

- Use two site categories:
  
  \( S = 0 \) Lava: 38 records
  
  \( S = 1 \) Ash: \( 60 \lesssim V_s \lesssim 200 \text{ms}^{-1} \), 13 records

- Depths between 4 and 14 km with average 9.6 km (standard deviation 2.3 km). Limit of 15 km chosen to differentiate between large tectonic earthquakes and deeper mantle events.

- Attenuation greater than for western USA due to highly fractured volcanic pile.

- Peak acceleration measured directly from accelerograms. Check against one from corrected records, small difference.

- Excludes records triggered on S-wave and those beyond cutoff distance (the distance to first nontriggered instrument).

- Does weighted and unweighted least squares analysis; find some differences.

3.118 **Rhoades (1997)**

- Ground motion model is:
  \[
  \log_{10} \text{a} = \alpha + \beta M - \log_{10} r + \gamma r
  \]
  where \( r = (d^2 + h^2)^{1/2} \)

  where \( \alpha = -1.237 \pm 0.254, \beta = 0.278 \pm 0.043, \gamma = -0.00220 \pm 0.00042, h = 6.565 \pm 0.547, \tau^2 = 0.00645 \pm 0.00382 \) and \( \sigma^2 = 0.0527 \pm 0.00525 \) (where \( \tau^2 \) is the inter-earthquake variance and \( \sigma^2 \) is the intra-earthquake variance and \( \pm \) signifies the standard error of the estimate).

- Notes that errors in magnitude determination are one element that contributes to the between-earthquake component of variance and could thus cause apparent differences between earthquakes, even if none existed.

- Develops a method to explicitly include consideration of magnitude uncertainties in a random earthquake effects model so that the between-earthquake component of variance can be split into the part that is due only to magnitude uncertainty (and is therefore of no physical consequence) and the part for which a physical explanation may be sought.
• Applies method to data of Joyner & Boore (1981). Assume two classes of magnitude estimates: those with estimates of $M_w$, which assumes to be associated with a standard error of 0.1, and those for which $M_L$ was used as a surrogate for $M_w$, which assumes to be associated with a standard error of 0.3. Find that the inter-earthquake variance is much lower than that computed assuming that the magnitudes are exact but that other coefficients are similar. Believes that the high inter-earthquake variance derived using the exact magnitudes model is largely explained by the large uncertainties in the magnitude estimates using $M_L$.

3.119 Schmidt et al. (1997)

• Ground motion model is:

$$\ln A = c_1 + c_2 M + c_3 \ln r + c_4 r + c_5 S_1 + c_6 S_2$$

where $r = \sqrt{R^2 + 6^2}$

where $A$ is in $\text{ms}^{-2}$, $c_1 = -1.589$, $c_2 = 0.561$, $c_3 = -0.569$, $c_4 = -0.003$, $c_5 = 0.173$, $c_6 = 0.279$ and $\sigma = 0.80$ (for all earthquakes), $c_1 = -1.725$, $c_2 = 0.687$, $c_3 = -0.742$, $c_4 = -0.003$, $c_5 = 0.173$, $c_6 = 0.279$ and $\sigma = 0.83$ (for shallow crustal earthquakes) and $c_1 = -0.915$, $c_2 = 0.543$, $c_3 = -0.692$, $c_4 = -0.003$, $c_5 = 0.173$, $c_6 = 0.279$ and $\sigma = 0.74$ (for subduction zone earthquakes).

• Use three site categories:

$S_1 = 0, S_2 = 0$ Rock, 54 records.
$S_1 = 1, S_2 = 0$ Hard soil, 63 records.
$S_1 = 0, S_2 = 1$ Soft soil, 83 records.

• Most records from SMA-1s with 6 records from SSA-2.

• Use PSA at 40 Hz ($0.025 \text{s}$) as peak ground acceleration.

• Records instrument corrected and bandpass filtered with cut-offs of 0.2 and 20 Hz.

• Use data from shallow crustal earthquakes (133 records) and subduction zone earthquakes (67 records).

• Perform regression on combined shallow crustal and subduction zone records, on just the shallow crustal records using $d_h$ and using $d_e$ and on just subduction zone records.

• Note that distribution w.r.t. distance improves in the near field when epicentral distance is used but only possible to use $d_e$ for shallow crustal earthquakes because for subduction zone earthquakes hypocentral distance is much greater than epicentral distance so should use $d_h$ instead.

• For $4 \leq M \leq 6$ distribution w.r.t. epicentral distance is quite good but for $M > 6$ no records from $d_e < 40 \text{km}$. 
• Use a two step procedure. Firstly use entire set and both horizontal components and compute two soil terms (one for hard and one for soft soil). In second step use soil terms to correct motions for rock conditions and then repeat regression.

• Use Bayesian analysis (Ordaz et al., 1994) so that derived coefficients comply with physics of wave propagation because include a priori information on the coefficients to avoid physically unrealistic values. Choose initial values of coefficients based on theory and previous results

• Cannot find coefficient in $r$ by regression so adopt 6 km from previous study.

• Examine residuals w.r.t. distance and magnitude and find no trends.

3.120 Youngs et al. (1997)

• Ground motion model for soil is:

$$\ln \text{PGA} = C_1^* + C_2 M + C_3^* \ln \left( r_{\text{rup}} + e^{C_4 - \frac{C_5}{C_3^*} M} \right) + C_6 Z_t + C_9 H + C_{10} Z_{ss}$$

with:

$$C_1^* = C_1 + C_6 Z_r$$

$$C_3^* = C_3 + C_7 Z_r$$

$$C_4^* = C_4 + C_8 Z_r$$

where PGA is in g, $C_1 = -0.6687$, $C_2 = 1.438$, $C_3 = -2.329$, $C_4 = \ln(1.097)$, $C_5 = 0.3643$, $C_9 = 0.00648$ and $\sigma = 1.45 - 0.1M$ (other coefficients in equation not needed for prediction on deep soil and are not given in paper).

Ground motion model for rock is:

$$\ln \text{PGA} = C_1^* + C_2 M + C_3^* \ln \left( r_{\text{rup}} + e^{C_4 - \frac{C_5}{C_3^*} M} \right) + C_6 Z_{ss} + C_8 Z_t + C_9 H$$

with:

$$C_1^* = C_1 + C_3 C_4 - C_3^* C_4^*$$

$$C_3^* = C_3 + C_6 Z_{ss}$$

$$C_4^* = C_4 + C_7 Z_{ss}$$

where PGA is in g, $C_1 = 0.2418$, $C_2 = 1.414$, $C_3 = -2.552$, $C_4 = \ln(1.7818)$, $C_8 = 0.3846$, $C_9 = 0.00607$ and $\sigma = 1.45 - 0.1M$ (other coefficients in equation not needed for prediction on rock and are not given in paper).

Use different models to force rock and soil accelerations to same level in near field.

• Use three site categories to do regression but only report results for rock and deep soil:

$Z_r = 1, Z_{ds} = 0, Z_{ss} = 0$ Rock: Consists of at most about a metre of soil over weathered rock, 96 records.

$Z_{ds} = 1, Z_r = 0, Z_{ss} = 0$ Deep soil: Depth to bedrock is greater than 20 m, 284 records.

$Z_{ss} = 1, Z_{ds} = 0, Z_r = 0$ Shallow soil: Depth to bedrock is less than 20 m and a significant velocity contrast may exist within 30 m of surface, 96 records.
• Use free-field recordings, i.e. instruments in basement or ground-floor of buildings less than four storeys in height. Data excluded if quality of time history poor or if portion of main shaking not recorded.

• Consider tectonic type: interface (assumed to be thrust) (98 records) ⇒ \( Z_i = 0 \), intraslab (assumed to be normal) (66 records) ⇒ \( Z_i = 1 \)

• Focal depths, \( H \), between 10 and 229 km

• Not enough data to perform individual regression on each subset so do joint regression analysis.

• Both effect of depth and tectonic type significant.

• Large differences between rock and deep soil.

• Note differences between shallow crustal and interface earthquake primarily for very large earthquakes.

• Assume uncertainty to be linear function of magnitude.

3.121 Zhao et al. (1997)

• Ground motion model (Model 1) is:

\[
\log_{10} \text{PGA} = A_1M_w + A_2 \log_{10} \sqrt{r^2 + d^2} + A_3h_c + A_4 + A_5\delta_R + A_6\delta_A + A_7\delta_I
\]

where PGA is in \( \text{m/s}^2 \), \( \delta_R = 1 \) for crustal reverse 0 otherwise, \( \delta_A = 1 \) for rock 0 otherwise, \( \delta_I = 1 \) for interface 0 otherwise, \( A_1 = 0.298 \), \( A_2 = -1.56 \), \( A_3 = 0.00619 \), \( A_4 = -0.365 \), \( A_5 = 0.107 \), \( A_6 = -0.186 \), \( A_7 = -0.124 \), \( d = 19 \) and \( \sigma = 0.230 \).

• Models also given for soil sites only (Model 2), unspecified site (Model 3), focal mechanism and tectonic type unknown (Model 4) and only magnitude, depth and distance known (Model 5)

• Records from ground or base of buildings. 33 from buildings with more than 3 storeys; find no significant differences.

• Retain two site categories:

1. Rock: Topographic effects expected, very thin soil layer (\( \leq 3 \text{m} \)) overlying rock or rock outcrop.

2. Soil: everything else

• Use depth to centroid of rupture, \( h_c \), \( 4 \leq h_c \leq 149 \). Only nine are deeper than 50 km. Exclude records from deep events which travelled through mantle.

• Consider tectonic type: C=crustal (24+17 records), I=interface (7+0 records) and S=slab (20+0 records)
• Consider source mechanism: N=normal (15+1 records), R=reverse (22+5 records) and S=strike-slip (12+11 records). Classify mixed mechanisms by ratio of components $\geq 1.0$.

• For only five records difference between the distance to rupture surface and the distance to centroid could be more than 10%.

• 66 foreign near-source records ($d_r \leq 10$ km) from 17 crustal earthquakes supplement NZ data. Mainly from western North America including 17 from Imperial Valley and 12 from Northridge.

• Exclude one station’s records (Atene A) due to possible topographical effects.

• Exclude records which could have been affected by different attenuation properties in the volcanic region.

• Note regional difference between Fiordland and volcanic region and rest of country but do model.

• Retain coefficients if significant at $\alpha = 0.05$.

• Anelastic term not significant.

3.122 Bouhadad et al. (1998)

• Ground motion model is:

$$A = c \exp(\alpha M)[R^k + a]^{-\beta - \gamma R}$$

• Coefficients not given, only predictions.

3.123 Costa et al. (1998)

• Ground motion model is:

$$\log(A) = a + bM + c \log(r)$$

where $A$ is in g, $a = -1.879$, $b = 0.431$ and $c = -1.908$ (for vertical components) and $a = -2.114$, $b = 0.480$ and $c = -1.693$ (for horizontal components).

• All records from digital instruments.

• Try including a term $d \log(M)$ but tests show that $d$ is negligible with respect to $a$, $b$ and $c$.

3.124 Manic (1998)

• Ground motion model is:

$$\log(A) = c_1 + c_2 M + c_3 \log(D) + c_4 D + c_5 S$$

$$D = (R^2 + d_0^2)^{1/2}$$

where $A$ is in g, $c_1 = -1.664$, $c_2 = 0.333$, $c_3 = -1.093$, $c_4 = 0$, $c_5 = 0.236$, $d_0 = 6.6$ and $\sigma = 0.254$. 

bullet Uses four site categories (following Ambraseys et al. (1996)) but only two have data within them:

$S = 0$ Rock (R): $v_s > 750 \text{ms}^{-1}$, 92 records.

$S = 1$ Stiff soil (A): $360 < v_s \leq 750 \text{ms}^{-1}$, 184 records.

where $v_s$ is average shear-wave velocity in upper 30 m.

bullet Uses both horizontal components to get a more reliable set of data.

bullet Tries using $M_L$ rather than $M_s$, epicentral distance rather than hypocentral distance and constraining anelastic decay coefficient, $c_4$, to zero. Chooses combination which gives minimum $\sigma$.

3.125 Rinaldis et al. (1998)

bullet Ground motion model is:

$$\ln Y = C_{14} + C_{22}M + C_{31}\ln(R + 15) + C_{43}S + C_{54}F$$

where $Y$ is in $\text{cms}^{-2}$, $C_{14} = 5.57$, $C_{22} = 0.82$, $C_{31} = -1.59$, $C_{43} = -0.14$, $C_{54} = -0.18$ and $\sigma = 0.68$. Assume 15 km inside $\ln(R + \ldots)$ from Theodulidis & Papazachos (1992).

bullet Use two site categories:

$S = 0$ Rock: includes stiff sites.

$S = 1$ Alluvium: includes both shallow and deep soil sites.

bullet Use two source mechanism categories:

$F = 0$ Thrust and strike-slip earthquakes.

$F = 1$ Normal earthquakes.

bullet Use epicentral distance because in Italy and Greece the surface geology does not show any evident faulting, consequently it is impossible to use a fault distance definition.

bullet Good distribution and coverage of data with respect to site category and source mechanism.

bullet Consider six strong-motion records (three Italian and three Greek) with different associated distances, magnitudes and record length and apply the different processing techniques of ENEA-ENEL and ITSAK to check if data from two databanks can be merged. Digitise six records using same equipment. ITSAK technique: subtract the reference trace (either fixed trace or trace from clock) from uncorrected accelerogram and select band-pass filter based on either Fourier amplitude spectra of acceleration components or selected using a different technique. ENEA-ENEL technique: subtract the reference trace from uncorrected accelerogram and select band-pass filter by comparing Fourier amplitude spectra of acceleration components with that of fixed trace. Find small differences in PGA, PGV, PGD so can merge Italian and Greek data into one databank.
3. Summary of published attenuation relations for peak ground acceleration

- Use four step regression procedure, similar to that Theodulidis & Papazachos (1992) use. First step use only data with \( M \geq 6.0 \) (7 \( \leq R \leq 138 \) km) for which distances are more accurate to find geometrical coefficient \( C_{31} \). Next find constant \((C_{12})\) and magnitude \((C_{22})\) coefficients using all data. Next find constant \((C_{13})\) and soil \((C_{43})\) coefficients using all data. Finally find constant \((C_{14})\) and source mechanism \((C_{54})\) coefficients using data with \( M \geq 6.0 \) for which focal mechanism is better constrained; final coefficients are \( C_{14}, C_{22}, C_{31}, C_{43}, C_{54} \). Investigate influence of distance on \( C_{54} \) by subdividing data in final step into three categories with respect to distance (7 \( \leq R \leq 140 \) km, 7 \( \leq R \leq 100 \) km and 7 \( \leq R \leq 70 \) km).

- Equation intended as first attempt to obtain attenuation relations from combined databanks and site characteristics and fault rupture properties could and should be taken into account.

3.126 Sadigh & Egan (1998)

- Based on Sadigh et al. (1997), see Section 3.86.

- Ground motion model is:

\[
\ln \text{PGA} = C_1 + C_2 M + C_3 \ln[r_{\text{rup}} + \exp(C_4 + C_5 M)]
\]

where PGA is in \( \text{g} \), for \( M < 6.5 \) \( C_4 = 1.29649 \) and \( C_5 = 0.25 \) and for \( M \geq 6.5 \) \( C_4 = -0.48451 \) and \( C_5 = 0.524 \). For rock sites: \( C_3 = -2.100 \), for strike-slip mechanism and \( M < 6.5 \) \( C_1 = -0.949 \) and \( C_2 = 1.05 \), for strike-slip mechanism and \( M \geq 6.5 \) \( C_1 = -1.274 \) and \( C_2 = 1.10 \), for reverse-slip and \( M < 6.5 \) \( C_1 = 0.276 \) and \( C_2 = 0.90 \) and for reverse-slip and \( M \geq 6.5 \) \( C_1 = -1.024 \) and \( C_2 = 1.10 \). For soil sites: \( C_3 = -1.75 \), for strike-slip mechanism and \( M < 6.5 \) \( C_1 = -1.100 \) and \( C_2 = 0.875 \), for strike-slip mechanism and \( M \geq 6.5 \) \( C_1 = -1.3830 \) and \( C_2 = 0.917 \), for reverse-slip mechanism and \( M < 6.5 \) \( C_1 = -0.0895 \) and \( C_2 = 0.750 \) and for reverse-slip mechanism and \( M \geq 6.5 \) \( C_1 = -1.175 \) and \( C_2 = 0.917 \) (\( \sigma \) not given).

- Use two site categories:

  1. Rock: bedrock within about a metre of surface. Note that many such sites are soft rock with \( V_s \leq 750 \) \( \text{ms}^{-1} \) and a strong velocity gradient because of near-surface weathering and fracturing, 274 records.

  2. Deep soil: greater than 20 m of soil over bedrock. Exclude data from very soft soil sites such as those from San Francisco bay mud, 690 records.

- Define crustal earthquakes as those that occur on faults within upper 20 to 25 km of continental crust.

- Consider source mechanism: RV=reverse (26+2) and SS=strike-slip (and some normal) (89+0). Classified as RV if rake > 45° and SS if rake < 45°. Find peak motions from small number of normal faulting earthquakes not to be significantly different than peak motions from strike-slip events so include in SS category.
• Separate equations for $M_w < 6.5$ and $M_w \geq 6.5$ to account for near-field saturation effects, for rock and deep soil sites and reverse and strike-slip earthquakes.

• Records from instruments in instrument shelters near ground surface or in ground floor of small, light structures.

• 4 foreign records (1 from Gazli and 3 from Tabas) supplement Californian records.


• Ground motion model is:

$$\log(a_p/g) = C_1 + C_2 M_s + C_3 d + C_4 \log d$$

where $a_p$ is in g, for soil sites $C_1 = -1.86$, $C_2 = 0.23$, $C_3 = -0.0062$, $C_4 = -0.230$ and $\sigma = 0.28$ and for rock sites $C_1 = -1.874$, $C_2 = 0.299$, $C_3 = -0.0029$, $C_4 = -0.648$ and $\sigma = 0.33$.

• Use two site categories because of limited available information (based on nature of top layer of site regardless of thickness) for which derive separate equations:
  1. Soil
  2. Rock

• Use record from free-field or in basements of buildings $\leq 3$ storeys high.

• Use $M_s$ because better represents size of shallow earthquakes and is determined from teleseismic readings with much smaller standard errors than other magnitude scales and also saturates at higher magnitudes than all other magnitude scales except $M_w$ which is only available for relatively small portion of earthquakes. For some small earthquakes convert to $M_s$ from other magnitude scales.

• For very short records, $\leq 5$ s long, correct using parabolic baseline, for records $> 10$ s long correct using elliptical filter and for records between 5 and 10 s long both parabolic correction and filtering applied and select best one from appearance of adjusted time histories.

• Equations not any more precise than other attenuation relations but are simply included for completeness and for a comparison of effects of dataset used with other dataset. Data did not allow distinction between different source mechanisms.

3.128 Sharma (1998)

• Ground motion model is:

$$\log A = c_1 + c_2 M_s - b \log(X + e^{c_3 M})$$

where $A$ is in g, $c_1 = -1.072$, $c_2 = 0.3903$, $b = -1.21$, $c_3 = 0.5873$ and $\sigma = 0.14$. 
• Considers two site categories but does not model:
  
  R Rock: generally granite/quartzite/sandstone, 41 records.
  S Soil: exposed soil covers on basement, 25 records.

• Focal depths between 7.0 and 50.0 km.

• Most records from distances > 50 km. Correlation coefficient between M and X is 0.63.

• Does not include source mechanism as parameter because not well defined and including many terms may lead to errors. Also neglects tectonic type because set is small and small differences are expected.

• Fit \( \log A = -b \log X + c \) to data from each earthquake separately and find average \( b \) equal to 1.292. Then fit \( \log A = aM - b \log X + c \) to data from all earthquakes and find \( b = 0.6884 \). Fit \( \log A = -b \log X + \sum d_i l_i \) to all data, where \( l_i = 1 \) for \( i \)th earthquake and 0 otherwise and find \( b = 1.21 \), use this for rest of analysis.

• Use weighted regression, due to nonuniform sampling over all \( M \) and \( X \). Divide data into distance bins 2.5 km wide up to 10 km and logarithmically dependent for larger distances. Within each bin each earthquake is given equal weight by assigning a relative weight of \( 1/n_{j,l} \), where \( n_{j,l} \) is the number of recordings for \( j \)th earthquake in \( l \)th distance bin, then normalise so that sum to total number of recordings.

• Original data included two earthquakes with focal depths 91.0 km and 119.0 km and \( M = 6.8 \) and 6.1 which caused large errors in regression parameters due to large depths so excluded them.

• Check capability of data to compute coefficients by deleting, in turn, \( c_1, c_2 \) and \( c_3 \), find higher standard deviation.

• Makes one coefficient at a time equal to values given in Abrahamson & Litehiser (1989), finds sum of squares increases.

• Notes lack of data could make relationship unreliable.

### 3.129 Smit (1998)

• Ground motion model is:
  \[
  \log Y = a + bM - \log R + dR
  \]
  where \( Y \) is in \( \text{nm/s}^2 \), \( b = 0.868, d = -0.001059, \sigma = 0.35 \), for horizontal PGA \( a = 5.230 \) and for vertical PGA \( a = 5.054 \).

• Most records from rock sites.

• Focal depths between 0 and about 27 km (most less than 10 km).

• Most records from \( M_L < 3.5 \).
3. Summary of published attenuation relations for peak ground acceleration

- Most earthquakes have strike-slip mechanism.
- Uses records from high gain short period seismographs and from strong-motion instruments.
- Records are instrument corrected.
- Eliminates some far-field data from small magnitude earthquakes using signal to noise ratio criterion.
- Records cover entire azimuthal range.
- Notes that need more data in near field.
- Notes that care must be taken when using equations for prediction of ground motion in strong earthquakes ($M \approx 6$) because of lack of data.

3.130 Cabañas et al. (1999), Cabañas et al. (2000) & Benito et al. (2000)

- Ground motion model is:

$$\ln A = C_1 + C_2 M + C_3 (R + R_0) + C_4 \ln (R + R_0) + C_5 S$$

where $A$ is in $\text{cm}^2$, $C_1 = 0$, $C_2 = 0.664$, $C_3 = 0.009$, $C_4 = -2.206$, $R_0 = 20$, $C_5 = 8.365$ (for S1), $C_5 = 8.644$ (for S2), $C_5 = 8.470$ (for S3) and $C_5 = 8.565$ (for S4) for horizontal PGA using $d_e$ and $M_s$ and all Mediterranean data, $C_1 = 0$, $C_2 = 0.658$, $C_3 = 0.008$, $C_4 = -2.174$, $R_0 = 20$, $C_5 = 7.693$ (for S1), $C_5 = 7.915$ (for S2) and $C_5 = 7.813$ (for S4) ($C_5$ not derived for S3) for vertical PGA using $d_e$ and $M_s$ and all Mediterranean data. $\sigma$ is not given ($R^2$ is reported).

- Use four site categories:
  
  S1 Hard basement rock.
  S2 Sedimentary rock and conglomerates.
  S3 Glacial deposits.
  S4 Alluvium and consolidated sediments.

- Derive separate equations using data from Mediterranean region and also just using data from Spain.

- Equations for Spain derived using $m_{bLg}$.

- Spanish data all from earthquakes with $2.5 \leq m_{bLg} \leq 6.0$ and $0 \leq d_h \leq 300 \text{km}$. 
3. Summary of published attenuation relations for peak ground acceleration

3.131 Chapman (1999)

- Ground motion model is:

\[
\log_{10} Y = a + b(M - 6) + c(M - 6)^2 + d\log(r^2 + h^2)^{1/2} + eG_1 + fG_2
\]

where \(Y\) is in cms\(^{-2}\), \(a = 3.098\), \(b = 0.3065\), \(c = -0.07570\), \(d = -0.8795\), \(h = 6.910\), \(e = 0.1452\), \(f = 0.1893\) and \(\sigma = 0.2124\).

- Use three site categories:
  A & B \(V_{s,30} > 760\) ms\(^{-1}\), 24 records \(\Rightarrow G_1 = 0, G_2 = 0\).
  C \(360 < V_{s,30} \leq 760\) ms\(^{-1}\), 116 records \(\Rightarrow G_1 = 1, G_2 = 0\).
  D \(180 < V_{s,30} \leq 360\) ms\(^{-1}\), 164 records \(\Rightarrow G_1 = 0, G_2 = 1\).

- Uses records from ground level or in basements of structures of two stories or less, and excludes records from dam or bridge abutments.
- Selects records which include major motion portion of strong-motion episode, represented by S wavetrain. Excludes records triggered late on S wave or those of short duration terminating early in coda.
- Most records already corrected. Some records instrument corrected and 4-pole causal Butterworth filtered (corner frequencies 0.1 and 25 Hz). Other records instrument corrected and 4-pole or 6-pole causal Butterworth bandpass filtered (corner frequencies 0.2 and 25 Hz). All data filtered using 6-pole causal high-pass Butterworth filter with corner frequency 0.2 Hz and velocity and displacement curves examined.
- Uses method of Campbell (1997) to reduce bias due to non-triggered instruments, for some recent shocks. Firstly uses all data to determine minimum distances (which are functions of magnitude and site condition) at which 16th percentile values of PGA are \(< 0.02\) g\([0.2\) ms\(^{-1}\)]\) (corresponding to 0.01 g\([0.1\) ms\(^{-1}\]\) vertical component trigger threshold). Next delete records from larger distances and repeat regression.
- Check residuals against distance and magnitude for each site class; find no obvious non-normal magnitude or distance dependent trends.

3.132 Cousins et al. (1999)

- Based on Zhao et al. (1997) see Section 3.121

- Ground motion model is:

\[
\log_{10} \text{PGA} = A_1 M_w + A_2 \log_{10} R + A_3 h_c + A_4 + A_5 + A_6 + A_7 R + A_8 M_w + A_9 + A_{10} R_v
\]
where PGA is in $\text{ms}^{-2}$, $R = \sqrt{r^2 + d^2}$ and $R_v$ is distance travelled by direct seismic wave through volcanic region. $A_5$ only for crustal reverse, $A_6$ only for interface, $A_7$ only for strong and weak rock, $A_8$ only for strong rock, $A_9$ only for strong rock, $A_1 = 0.2955$, $A_2 = -1.603$, $A_3 = 0.00737$, $A_4 = -0.3004$, $A_5 = 0.1074$, $A_6 = -0.1468$, $A_7 = -0.00150$, $A_8 = 0.3815$, $A_9 = -2.660$, $A_{10} = -0.0135$, $d = 19.0$ and $\sigma = 0.24$.

- Originally considers five site categories but retain three:
  1. Strong rock: $V_s > 700 \text{ms}^{-1}$
  2. Weak rock: $375 \leq V_s \leq 700 \text{ms}^{-1}$ and category AV those sites with a very thin layer $(\leq 3 \text{m})$ overlying rock
  3. Soil: everything else

- Depth to centroid of rupture, $h_c$, used, $4 \leq h_c \leq 94 \text{km}$.

- 60% on soil, 40% on rock

- Consider tectonic type: C=Crustal (12+17), I=Interface (5+0) and S=Slab(8+0)

- Consider source mechanism: N=normal (6+1), R=reverse (12+5) and S=strike-slip (7+11). Mixed classified by ratio of components $\geq 1.0$.

- Mixture of analogue and digital accelerograms (72%) and seismograms (28%)

- Accelerograms sampled at 100–250 samples/sec. Bandpass frequencies chosen by analysis of Fourier amplitude spectrum compared with noise spectrum. $f_{\text{min}}$ between 0.15 and 0.5 Hz and $f_{\text{max}}$ equal to 25 Hz. Instrument correction applied to analogue records.

- Seismograms sampled at 50–100 samples/sec. Differentiated once. Instrument corrected and high pass filtered with $f_{\text{min}} = 0.5 \text{Hz}$. No low pass filter needed.

- Clipped seismograms usually retained.

- Directional effect noticed but not modelled.

- Most records from more than 100 km away. Note lack of near-source data.

- Records from accelerograms further away than first operational non-triggering digital accelerometer, which had a similar triggering level, were excluded.

- Models difference between high attenuating volcanic and normal regions.

3.133 Ólafsson & Sighjörnsson (1999)

- Ground motion model is:
  $$\log(a_{\text{max}}) = \phi_1 + \phi_2 \log M_0 - \phi_3 \log(R)$$

where $a_{\text{max}}$ is in $\text{cms}^{-2}$, $M_0$ is in dyn cm and $R$ is in cm, $\phi_1 = 0.0451$, $\phi_2 = 0.3089$, $\phi_3 = 0.9642$ and $\sigma = 0.3148$. 
3. Summary of published attenuation relations for peak ground acceleration

- Instruments in basement of buildings located on rock or very stiff ground.
- Records from 21 different stations.
- Focal depths between 1 and 11 km.
- Most records from digital instruments with 200 Hz sampling frequency and high dynamic range.
- Seismic moments calculated using the strong-motion data.
- Most data from $M_0 \leq 5 \times 10^{23}$ dyn cm and from $d_e \leq 40$ km.

3.134 Spudich et al. (1999)

- Update of Spudich et al. (1997) see Section 3.114.
- Ground motion model is:

$$\log_{10} Z = b_1 + b_2(M - 6) + b_3(M - 6)^2 + b_5 \log_{10} D + b_6 \Gamma$$

with: $$D = \sqrt{\frac{r^2}{j_b} + h^2}$$

where $Z$ is in $g$, $b_1 = 0.299$, $b_2 = 0.229$, $b_3 = 0$, $b_5 = -1.052$, $b_6 = 0.112$, $h = 7.27$ and $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 + \sigma_3^2}$ where $\sigma_1 = 0.172$, $\sigma_2 = 0.108$ and for randomly oriented horizontal component $\sigma_3 = 0.094$ and for larger horizontal component $\sigma_3 = 0$.

- Use two site categories (could not use more or $V_{s,30}$ because not enough data):
  
  $\Gamma = 0$ Rock: includes hard rock (12 records) (plutonic igneous rocks, lava flows, welded tuffs and metamorphic rocks unless severely weathered when they are soft rock), soft rock (16 records) (all sedimentary rocks unless there was some special characteristic noted in description, such as crystalline limestone or massive cliff-forming sandstone when they are hard rock) and unknown rock (8 records). 36 records in total.

  $\Gamma = 1$ Soil (alluvium, sand, gravel, clay, silt, mud, fill or glacial outwash of more than 5 m deep): included shallow soil (8 records) (5 to 20 m deep), deep soil (77 records) (> 20 m deep) and unknown soil (21 records). 106 records in total.

- Applicable for extensional regimes, i.e. those regions where lithosphere is expanding areally. Significantly different ground motion than non-extensional areas.

- Criteria for selection of records is: $M_w \geq 5.0$, $d_f \leq 105$ km. Reject records from structures of more than two storeys or from deeply embedded basements or those which triggered on S wave. Also reject those close to dams which may be affected by dam. Also only use records already digitised.

- Include records from those instrument beyond cutoff distance, i.e. beyond first instrument which did not trigger, because of limited records and lack of data on non-triggering.
Not enough data to be able to find all coefficients so use $b_2$ and $b_3$ from Boore et al. (1993) and $b_6$ from Boore et al. (1994a).

One-stage maximum likelihood method used because many events used which only have one record associated with them and the two-stage method underestimates the earthquake-to-earthquake component of variation in that case.

Correction technique based on uniform correction and processing using upper, $f_h$, and lower, $f_l$, frequencies for passband based on a visual inspection of Fourier amplitude spectrum and baseline fitting with a polynomial of degree 5.

Check to see whether normal and strike-slip earthquakes give significantly different ground motions. No significant difference.

### 3.135 Wang et al. (1999)

- Ground motion model is:
  \[ \log A = a + b M_s + c \log R + dR \]
  where $A$ is in $\text{cm}^2$, using just soil records $a = 0.430$, $b = 0.428$, $c = -0.764$, $d = -0.00480$ and $\sigma = 0.271$.

- Use records from aftershocks of Tangshan earthquake.

- Focal depths between 5.7 and 12.9 km.

- Note $M_s$ values used may have some systematic deviation from other regions and errors, which decrease with increasing magnitude, can reach ±0.5.

- Errors in epicentral locations not less than 2 km. Reject 3 records because have $R < 2$ km, if include then find standard deviation increases and $c$ obtained is unreasonable.

- Fit equation to all data (both rock and soil) but note that only for reference. Also fit equation to soil data only ($2.1 \leq R \leq 41.3$ km, $3.7 \leq M_s \leq 4.9$, 33 records from 6 earthquakes).

- Remove all four earthquakes with $M_s < 4.0$, for which error in magnitude determination is large, and fit equation to soil data only ($2.8 \leq R \leq 41.1$ km, $4.5 \leq M_s \leq 4.9$, 13 records from 2 earthquakes). Find smaller uncertainties.

- Also fit data to $\log A = a + b M_s - c \log(R + R_0)$; find similar results.

- Also use resultant of both horizontal components; find similar results to using larger component.

- Also fit eastern North America data ($3.9 \leq R \leq 61.6$ km, $2.3 \leq M_s \leq 3.8$, 7 records from 3 earthquakes); find similar attenuation characteristics.

- All equations pass F-tests.
3. Summary of published attenuation relations for peak ground acceleration

3.136 Zaré et al. (1999)

- Ground motion model is:
  \[ \log A = aM - bX - d\log X + c_iS_i \]
  where units of \( A \) not given (but probably \( \text{ms}^{-2} \)), for vertical PGA \( a = 0.362, b = 0.0002, c_1 = -1.124, c_2 = -1.150, c_3 = -1.139, c_4 = -1.064, d = 1 \) and \( \sigma = 0.336 \) and for horizontal PGA \( a = 0.360, b = 0.0003, c_1 = -0.916, c_2 = -0.862, c_3 = -0.900, c_4 = -0.859, d = 1 \) and \( \sigma = 0.333 \).

- Use four site categories, which were based on \( H/V \) receiver function (RF) measurements (use geotechnical measurements at 50 sites and strong-motion accelerograms at other sites):
  - Site class 1 RF does not exhibit any significant amplification below 15 Hz. Corresponds to rock and stiff sediment sites with average S-wave velocity in top 30 m \( (V_{s,30}) > 700 \text{ms}^{-1} \). Use \( c_1 \).
  - Site class 2 RF exhibits a fundamental peak exceeding 3 at a frequency between 5 and 15 Hz. Corresponds to stiff sediments and/or soft rocks with \( 500 < V_{s,30} \leq 700 \text{ms}^{-1} \). Use \( c_2 \).
  - Site class 3 RF exhibits peaks between 2 and 5 Hz. Corresponds to alluvial sites with \( 300 < V_{s,30} \leq 500 \text{ms}^{-1} \). Use \( c_3 \).
  - Site class 4 RF exhibits peaks for frequencies < 2 Hz. Corresponds to thick soft alluvium. Use \( c_4 \).

- Only 100 records are associated with earthquakes with known focal mechanisms, 40 correspond to strike-slip/reverse, 31 to pure strike-slip, 24 to pure reverse and 4 to a pure vertical plane. Note that use of equations should be limited to sources with such mechanisms.

- Use only records for which the signal to noise ratio was acceptable.

- Source parameters from teleseismic studies available for 279 records.

- Calculate source parameters directly from the strong-motion records for the remaining 189 digital records using a source model. Hypocentral distance from S-P time and seismic moment from level of acceleration spectra plateau and corner frequency.

- Focal depths from 9 to 133 km but focal depth determination is very imprecise and majority of earthquakes are shallow.

- Suggest that whenever estimation of depth of earthquake is impossible use distance to surface projection of fault rather than hypocentral distance because differences between hypocentral and epicentral distances are not significant for shallow earthquakes.

- Also derive equations based only on data from the Zagros thrust fault zone (higher seismic activity rate with many earthquakes with \( 4 \leq M \leq 6 \)) and based only on data from the Alborz-Central Iran zone (lower seismic activity rate but higher magnitude earthquakes). Find some differences between regions.

- Investigate fixing \( d \) to 1 (corresponding to body waves) and to 0.5 (corresponding to surface waves).
• Note that there are very few (only two) near-field (from less than 10 km from surface fault rupture) records from earthquakes with $M_w > 6.0$ and so results are less certain for such combinations of magnitude and distance.


• Ground motion model is:

$$
\log y = b_1 + b_2 M_s + b_3 d + b_A S_A + b_S S_S
$$

where $y$ is in $\text{ms}^{-2}$, for horizontal PGA $b_1 = -0.659, b_2 = 0.202, b_3 = -0.0238, b_A = 0.020, b_S = 0.029$ and $\sigma = 0.214$ and for vertical PGA $b_1 = -0.959, b_2 = 0.226, b_3 = -0.0312, b_A = 0.024, b_S = 0.075$ and $\sigma = 0.270$.

Assume decay associated with anelastic effects due to large strains and cannot use both $\log d$ and $d$ because highly correlated in near field.

• Use four site categories (often use shear-wave velocity profiles):

  L Very soft soil: approximately $V_{s,30} < 180 \text{ms}^{-1}$, (combine with category S) $\Rightarrow$ $S_A = 0, S_S = 1$, 4 records.
  S Soft soil: approximately $180 \leq V_{s,30} < 360 \text{ms}^{-1}$ $\Rightarrow$ $S_A = 0, S_S = 1$, 87 records.
  A Stiff soil: approximately $360 \leq V_{s,30} < 750 \text{ms}^{-1}$ $\Rightarrow$ $S_A = 1, S_S = 0$, 68 records.
  R Rock: approximately $V_{s,30} > 750 \text{ms}^{-1}$ $\Rightarrow$ $S_A = 0, S_S = 0$, 23 records.

where $V_{s,30}$ is average shear-wave velocity to 30 m. Know no site category for 14 records.

• Use only records from ‘near field’ where importance of vertical acceleration is greatest. Select records with $M_s \geq 5.8$, $d \leq 15 \text{km}$ and focal depth $h \leq 20 \text{km}$. Do not use magnitude dependent definition to avoid correlation between magnitude and distance for the records.

• Focal depths, $1 \leq h \leq 19 \text{km}$.

• Majority (133 records, 72%) of records from W. N. America, 40 records (22%) from Europe and rest from Canada, Nicaragua, Japan and Taiwan.

• Consider three source mechanisms but do not model:

  1. Normal, 8 earthquakes, 16 records.
  2. Strike-slip, 18 earthquakes, 72 records.
  3. Thrust, 16 earthquakes, 98 records.

• Use only free-field records using definition of Joyner & Boore (1981), include a few records from structures which violate this criterion but feel that structure did not affect record in period range of interest.
• Records well distributed in magnitude and distance so equations are well constrained and representative of entire dataspace. Note lack of records from normal earthquakes. Correlation coefficient between magnitude and distance is $-0.10$.

• Use same correction procedure (elliptical filter with pass band 0.2 to 25 Hz, roll-off frequency 1.001 Hz, sampling interval 0.02 s, ripple in pass-band 0.005 and ripple in stop-band 0.015 with instrument correction) for almost all records. Use 19 records available only in corrected form as well because in large magnitude range. Think different correction procedures will not affect results.

• Try both one-stage and two-stage regression method for horizontal PGA; find large differences in $b_2$ but very similar $b_3$. Find that (by examining cumulative frequency distribution graphs for magnitude scaling of one-stage and two-stage methods) that two-stage better represents large magnitude range than one-stage method. Examine plot of amplitude factors from first stage of two-stage method against $M_s$; find that amplitude factor of the two Kocaeli ($M_s = 7.8$) records is far below least squares line through the amplitude factors. Remove the two Kocaeli records and repeat analysis; find $b_2$ from two-stage method is changed by a lot but $b_2$ from one-stage method is not. Conclude two-stage method is too greatly influenced by the two records from Kocaeli and hence use one-stage method.

• Find $b_2$ and $b_3$ significantly different than 0 at 5% level but $b_A$ and $b_S$ not significant.

3.138 Bozorgnia et al. (2000)

• Ground motion model is:

$$\ln Y = c_1 + c_2 M_w + c_3 (8.5 - M_w)^2$$
$$+ c_4 \ln \left( \left( R_s^2 + \left[ c_5 S_{HS} + c_6 \{ S_{PS} + S_{SR} \} + c_7 S_{HR} \right] \exp (c_8 M_w + c_9 \{ 8.5 - M_w \}^2)^2 \right)^{1/2} \right) + c_{10} F_{SS} + c_{11} F_{RV} + c_{12} F_{TH}$$
$$+ c_{13} S_{HS} + c_{14} S_{PS} + c_{15} S_{SR} + c_{16} S_{HR}$$

• Use four site categories:

  HS Holocene soil: recent alluvium $\Rightarrow S_{HS} = 1, S_{PS} = 0, S_{SR} = 0, S_{HR} = 0$.
  PS Pleistocene soil: older alluvium $\Rightarrow S_{PS} = 1, S_{HS} = 0, S_{SR} = 0, S_{HR} = 0$.
  SR Soft rock $\Rightarrow S_{SR} = 1, S_{HS} = 0, S_{PS} = 0, S_{HR} = 0$.
  HR Hard rock $\Rightarrow S_{HR} = 1, S_{HS} = 0, S_{PS} = 0, S_{SR} = 0$.

• Consider all records to be free-field.

• All earthquakes occurred in shallow crustal tectonic environment.

• Consider three source mechanisms: strike-slip ($F_{SS} = 1, F_{RV} = 0, F_{TH} = 0$) 20+ earthquakes (including 1+ normal faulting shock), reverse ($F_{RV} = 1, F_{SS} = 0, F_{TH} = 0$) 7+ earthquakes and thrust ($F_{TH} = 1, F_{SS} = 0, F_{RV} = 0$) 6+ earthquakes.
3. Summary of published attenuation relations for peak ground acceleration

- Coefficients not given, only predictions.

3.139 Campbell & Bozorgnia (2000)

- Ground motion model is:

\[
\ln Y = c_1 + c_2 M_w + c_3 (8.5 - M_w)^2 + c_4 \ln \left\{ R_d^2 + \left[ (c_5 + c_6 (S_{PS} + S_{SR}) + c_7 S_{HR}) \right] \right\}^{1/2} + c_{10} F_{SS} + c_{11} F_{RV} + c_{12} F_{TH} \\
+ c_{13} S_{HS} + c_{14} S_{PS} + c_{15} S_{SR} + c_{16} S_{HR}
\]

where \( Y \) is in g, for horizontal uncorrected PGA \( c_1 = -2.896, c_2 = 0.812, c_3 = 0, c_4 = -1.318, c_5 = 0.187, c_6 = -0.029, c_7 = -0.064, c_8 = 0.616, c_9 = 0, c_{10} = 0, c_{11} = 0.179, c_{12} = 0.307, c_{13} = 0, c_{14} = -0.062, c_{15} = -0.195, c_{16} = -0.320 \) and \( \sigma = 0.509 \), for horizontal corrected PGA \( c_1 = -4.033, c_2 = 0.812, c_3 = 0.036, c_4 = -1.061, c_5 = 0.041, c_6 = -0.005, c_7 = -0.018, c_8 = 0.766, c_9 = 0.034, c_{10} = 0, c_{11} = 0.343, c_{12} = 0.351, c_{13} = 0, c_{14} = -0.123, c_{15} = -0.138, c_{16} = -0.289 \) and \( \sigma = 0.465 \), for vertical uncorrected PGA \( c_1 = -2.807, c_2 = 0.756, c_3 = 0, c_4 = -1.391, c_5 = 0.191, c_6 = 0.044, c_7 = -0.014, c_8 = 0.544, c_9 = 0, c_{10} = 0, c_{11} = 0.091, c_{12} = 0.223, c_{13} = 0, c_{14} = -0.096, c_{15} = -0.212, c_{16} = -0.199 \) and \( \sigma = 0.548 \) and for vertical corrected PGA \( c_1 = -3.108, c_2 = 0.756, c_3 = 0, c_4 = -1.287, c_5 = 0.142, c_6 = 0.046, c_7 = -0.040, c_8 = 0.587, c_9 = 0, c_{10} = 0, c_{11} = 0.253, c_{12} = 0.173, c_{13} = 0, c_{14} = -0.135, c_{15} = -0.138, c_{16} = -0.256 \) and \( \sigma = 0.520 \).

- Use four site categories:

  HS Holocene soil: soil deposits of Holocene age (11,000 years or less), generally described on geological maps as recent alluvium, approximate average shear-wave velocity in top 30 m is 290 ms\(^{-1}\) \( \Rightarrow S_{HS} = 1, S_{PS} = 0, S_{SR} = 0, S_{HR} = 0 \).

  PS Pleistocene soil: soil deposits of Pleistocene age (11,000 to 1.5 million years), generally described on geological maps as older alluvium or terrace deposits, approximate average shear-wave velocity in top 30 m is 370 ms\(^{-1}\) \( \Rightarrow S_{PS} = 1, S_{HS} = 0, S_{SR} = 0, S_{HR} = 0 \).

  SR Soft rock: primarily includes sedimentary rock deposits of Tertiary age (1.5 to 100 million years), approximate average shear-wave velocity in top 30 m is 420 ms\(^{-1}\) \( \Rightarrow S_{SR} = 1, S_{HS} = 0, S_{PS} = 0, S_{HR} = 0 \).

  HR Hard rock: primarily includes older sedimentary rock deposits, metamorphic rock and crystalline rock, approximate average shear-wave velocity in top 30 m is 800 ms\(^{-1}\) \( \Rightarrow S_{HR} = 1, S_{HS} = 0, S_{PS} = 0, S_{SR} = 0 \).

- Earthquakes from shallow crustal active tectonic regions.

- Most earthquakes with \( 6 \leq M_w \leq 7 \).

- Use three source mechanism categories:

  SS Strike-slip: primarily vertical or near-vertical faults with predominantly lateral slip (includes only normal faulting earthquake in set), \( \Rightarrow F_{SS} = 1, F_{RV} = 0, F_{TH} = 0 \).
3. Summary of published attenuation relations for peak ground acceleration

RV Reverse: steeply dipping faults with either reverse or reverse-oblique slip, \( F_{RV} = 1, F_{SS} = 0, F_{TH} = 0 \).

TH Thrust: shallow dipping faults with predominantly thrust slip including blind-thrust shocks, \( F_{TH} = 1, F_{SS} = 0, F_{RV} = 0 \).

- Consider all records to be free-field. Records from ground level in instrument shelter or a building <3 storeys high (<7 if located on hard rock). Include records from dam abutments to increase number of rock records. Exclude data from basements of buildings of any size or at toe or base of dams.

- Exclude data from \( R_s > 60 \text{ km} \) to avoid complicating problems related to arrival of multiple reflections from lower crust. Distance range is believed to include most ground shaking amplitudes of engineering interest, except for possibly long period spectral accelerations on extremely poor soil.

- Equations for uncorrected (Phase 1 standard level of processing) and corrected (Phase 2 standard level of processing).

- Find sediment depth (depth to basement rock) has significant effect on amplitude of ground motion and should be taken into account; it will be included once its mathematical form is better understood.

3.140 Jain et al. (2000)

- Ground motion model is:

  \[
  \ln(\text{PGA}) = b_1 + b_2 M + b_3 R + b_4 \ln(R)
  \]

  where PGA is in g, for central Himalayan earthquakes \( b_1 = -4.135, b_2 = 0.647, b_3 = -0.00142, b_4 = -0.753 \) and \( \sigma = 0.59 \) and for non-subduction earthquakes in N.E. India \( b_1 = -3.443, b_2 = 0.706, b_3 = 0, b_4 = -0.828 \) and \( \sigma = 0.44 \) (coefficients of other equations not given here because they are for a particular earthquake).

- Data from strong-motion accelerographs (SMA) and converted from structural response recorders (SRR), which consist of six seismoscopes with natural periods 0.40, 0.75 and 1.25 s and damping levels 5 and 10%. Conversion achieved by deriving spectral amplification factors (ratio of response ordinate and PGA) using SMA recordings close to SRR, checking that these factors were independent of distance. The mean of the six estimates of PGA (from the six spectral ordinates) from each SRR are then used as PGA values. Check quality of such PGA values through statistical comparisons and discard those few which appear inconsistent.

- Data split into four categories for which derive separate equations:
  
  a Central Himalayan earthquakes (thrust): (32 SMA records, 117 SRR records), 3 earthquakes with \( 5.5 \leq M \leq 7.0 \), focal depths \( 10 \leq h \leq 33 \text{ km} \) and \( 2 \leq R \leq 322 \text{ km} \).
b Non-subduction earthquakes in NE India (thrust): (43 SMA records, 0 SRR records), 3 earthquakes with $5.2 \leq M \leq 5.9$, focal depths $33 \leq h \leq 49$ km and $6 \leq R \leq 243$ km.

c Subduction earthquakes in NE India: (33 SMA records, 104 SRR records), 1 earthquake with $M = 7.3$, focal depth $h = 90$ km and $39 \leq R \leq 772$ km.

d Bihar-Nepal earthquake in Indo-Gangetic plains (strike-slip): (0 SMA records, 38 SRR records), 1 earthquake with $M = 6.8$, focal depth $h = 57$ km and $42 \leq R \leq 337$ km.

- Limited details of fault ruptures so use epicentral distance.
- Use epicentral locations which give best correlation between distance and PGA.
- Find PGA not well predicted by earlier equations.
- Simple model and regression method because of limited data.
- Remove one PGA value from category b equation because significantly affecting equation and because epicentral location only approximate.
- Constrain $b_3$ for category b equation to zero because otherwise positive.
- Category c originally contained another earthquake (14 SMA records, $M = 6.1$, $200 \leq d \leq 320$ km) but gave very small $b_2$ so exclude it.
- Equations for category c and category d have $b_2$ equal to zero because only one earthquake.
- Find considerable differences between predicted PGA in different regions.
- Note lack of data hence use equations only as first approximation.

3.141 Kobayashi et al. (2000)

- Ground motion model is:

$$\log_{10} y = aM - bx - \log(x + c 10^{dM}) + eh + S_k$$

where $h$ is focal depth, $y$ is in $\text{cm}^2$, $a = 0.578$, $b = 0.00355$, $e = 0.00661$, $S = -0.069$, $S_R = -0.210$, $S_H = -0.114$, $S_M = 0.023$, $S_S = 0.237$ and $\sigma_T = \sqrt{\sigma^2 + \tau^2}$ where $\sigma = 0.213$ and $\tau = 0.162$.

- Use four site categories (most data from medium and hard soils):

$S_k = S_R$ Rock

$S_k = S_H$ Hard soil

$S_k = S_M$ Medium soil

$S_k = S_S$ Soft soil

$S$ is the mean site coefficient, i.e. when do not consider site category.
3. Summary of published attenuation relations for peak ground acceleration

- Records interpolated in frequency domain from 0.02 to 0.005 s interval and displacement time history calculated using a fast Fourier transform (FFT) method having perpendicular to beginning and appended to end at least 5 s of zeros to record. Number of samples in FFT is large enough that duration used in FFT is at least twice that of selected duration for processing window so that numerical errors are small. Bandpass Ormsby filter used, with limits 0.2 and 24.5 Hz, and displacement time history plotted. If displacement in pre- and appended portions is large then increase lower frequency limit in filter until displacements are small, using smoothed Fourier spectral amplitudes from 0.05 to 25 Hz to make choice.

- Most earthquakes are intra-slab.

- Note lack of near-field data for all magnitudes, most data from > 100 km, therefore use coefficients, \( c \) and \( d \), from an early study.

- Excludes data from distances greater than the distance at which an earlier study predicts PGA < 0.02 ms\(^{-2}\).

- Consider residuals of earthquakes in western Japan (a small subset of data) and find small difference in anelastic coefficient and focal depth coefficient but note may be due to small number of records or because type of source not modelled.

- Note model predicts intraslab motions well but significantly over predicts interface motions.

- Plots site correction factors (difference between individual site factor and mean factor for that category) and find rock sites have largest variation, which suggest due to hard and soft rock included.

- Examine residual plots. Find no significant bias.

3.142 Monguilner et al. (2000a)

- Ground motion model is:

\[ \log a_m = C'_0 + C_1 M + C_2 \Delta + C_3 \log \Delta + C_4 S_r \]

where \( \Delta = \sqrt{DE^2 + H^2 + S^2} \), DE is epicentral distance, \( H \) is focal depth, \( S \) is fault area and

\( C'_0 = -1.23, C_1 = 0.068, C_2 = -0.001 \) and \( C_3 = -0.043 \) (\( \sigma \) is not given). Note that there are typographical inconsistencies in the text, namely \( S_r \) maybe should be replaced by \( S_{al} \).

- Use two site categories (based on Argentinean seismic code):

\( S_r = 1 \) Stiff soil (I\( \text{IA} \)).

\( S_r = 0 \) Intermediate stiff soil (I\( \text{IB} \)).

Since there is no geotechnical data available, classify sites, assuming a uniform surface layer, using the predominant period of ground motions estimated using Fourier spectra to get an equivalent shear-wave velocity (mainly these are between 100 and 400 ms\(^{-1}\)).
3. Summary of published attenuation relations for peak ground acceleration

- Records from instruments located in basements or ground floors of relatively small buildings.
- Records from SMAC and SMA-1 instruments.
- Uniform digitisation and correction procedure applied to all records to reduce noise in high and low frequency range.
- Calculate fault area using \( \log S = M_s + 8.13 - 0.6667 \log(\sigma \Delta \sigma / \mu) \) where \( \Delta \sigma \) is stress drop, \( \sigma \) is average stress and \( \mu \) is rigidity.
- Most magnitudes between 5.5 and 6.0.
- Most records from \( DE < 100 \text{ km} \).
- Most focal depths, \( H \leq 40 \text{ km} \). One earthquake with \( H = 120 \text{ km} \).
- Use weighted regression because of a correlation between magnitude and distance of 0.35. Weight each record by \( \omega_i = (\omega_M + \omega_{DH})/2 \) where (note there are typographical errors in formulae in paper):
  \[
  \omega_M = \frac{n_s(i_s) \Delta M(n_i) n_e(n_i, i_s) \Delta M_T}{n_{cat}}
  \]
  \[
  \omega_{DH} = \frac{n_s(i_s) \Delta \log DH(n_i) n_e(n_i, i_s) \Delta \log DH_T}{n_{cat}}
  \]
  \[
  \Delta M_T = \frac{\sum \Delta M(n_i)}{n_{cat}}
  \]
  \[
  \Delta \log DH_T = \frac{\sum \Delta \log DH(n_i)}{n_{cat}}
  \]
  where \( \Delta M(n_i) \) is the width of the \( n_i \)th magnitude interval and \( \Delta \log DH(n_i) \) is the width of the \( n_i \)th distance interval, \( n_{cat} \) is total number of intervals, \( n_i \) the index of the interval, \( n_e(n_i, i_s) \) is the number of records in interval \( n_i \) from site classification \( i_s \) and \( n_s \) is the number of records from site classification \( i_s \). Use two site classifications, three magnitude intervals and four epicentral distance intervals so \( n_{cat} = 2 \times 3 \times 4 = 24 \).
- First do regression on \( \log A_i = C_0 + C_1 M + C_2 \Delta + C_3 \log \Delta \) and then regress residuals, \( e_i \), against \( C_4 S_r + C_5 S_{sl} \) where \( S_{sl} = 1 \) if site is intermediate stiff soil and \( S_{sl} = 0 \) otherwise. Then \( C'_0 = C_0 + C_5 \) and \( C'_4 = C_4 + C_5 \). Similar method to that used by Ambraseys et al. (1996).

3.143 Sharma (2000)

- Based on Sharma (1998), see 3.128.
- \( A \) is in \( g \) and coefficients are: \( c_1 = -2.87, c_2 = 0.634, c_3 = 0.62, b = 1.16 \) and \( \sigma = 0.142 \).
- Fit \( \log A = -b \log X + c \) to data from each earthquake separately and find average \( b \) equal to 1.18. Then fit \( \log A = aM - b \log X + c \) to data from all earthquakes and find \( b = 0.405 \). Fit \( \log A = -b \log X + \sum d_i l_i \) to all data, where \( l_i = 1 \) for \( i \)th earthquake and 0 otherwise and find \( b = 1.16 \), use this for rest of analysis.
3. Summary of published attenuation relations for peak ground acceleration

3.1.4 Si & Midorikawa (2000)

- Ground motion model for rupture distance is:
  \[
  \log A = aM_w + hD + \sum d_i S_i + e - \log(X + c_1 10^{c_2 M_w}) - kX
  \]
  where \( A \) is in cm/s\(^2\), \( a = 0.50, h = 0.0036, d_1 = 0, d_2 = 0.09, d_3 = 0.28, e = 0.60, k = 0.003 \) and \( \sigma = 0.27 \) (\( c_1 \) and \( c_2 \) are not given).

Ground motion model for equivalent hypocentral distance (EHD) is:

\[
\log A = aM_w + hD + \sum d_i S_i + e - \log X_{eq} - kX_{eq}
\]

where \( A \) is in cm/s\(^2\), \( a = 0.50, h = 0.0043, d_1 = 0, d_2 = 0.01, d_3 = 0.22, e = 0.61, k = 0.003 \) and \( \sigma = 0.28 \).

- Use two site categories for most records following Joyner & Boore (1981):
  1. Rock
  2. Soil

- Records from free-field or small buildings where soil-structure interaction effects are negligible.

- Records from three different type of instrument so instrument correct. Filter with corner frequencies, chosen according to noise level, a) 0.08 & 0.15 Hz, b) 0.10 & 0.20 Hz or c) 0.15 to 0.33 Hz.

- Exclude records obviously affected by soil liquefaction.

- Focal depth (defined as average depth of fault plane), \( D \), between 6 and 120 km; most less than 40 km.

- Select records satisfying: distances < 300 km for \( M_w > 7 \), distances < 200 km for 6.6 ≤ \( M_w \) ≤ 7, distances < 150 km for 6.3 ≤ \( M_w \) ≤ 6.5 and distances < 100 km for \( M_w \) < 6.3.

- Fix \( k = 0.003 \).

- Multiply rock PGAs by 1.4 to get soil PGA based on previous studies.

- Use three fault types: crustal (\(<719 \) records from 9 earthquakes) : \( S_1 = 1, S_2 = 0, S_3 = 0 \), inter-plate (\(<291 \) records from 7 earthquakes) : \( S_2 = 1, S_1 = 0, S_3 = 0 \) and intra-plate (\(<127 \) records from 5 earthquakes) : \( S_3 = 1, S_1 = 0, S_2 = 0 \).

- Use weighted regression giving more weight to near-source records (weight factor of 8 for records < 25 km, 4 for records between 20 and 50 km, 2 for records between 50 and 100 km and 1 for records > 100 km). Use only three earthquakes with sufficient near-source data to find \( c_1 \) and \( c_2 \) then use all earthquakes to find \( a, h, d_i, e \) in second stage using weighted regression dependent on number of recordings for each earthquake (weight factor of 3 for >83 records, 2 for between 19 and 83 records, 1 for <19 records.)
• Note that $M_w$ and $D$ are positively correlated so $a$ and $h$ may not be correctly determined when using rupture distance. Constrain $a$ for rupture distance model to that obtained for EHD and constrain PGA to be independent of magnitude at 0 km and repeat regression. Coefficients given above.

3.145 Smit et al. (2000)

• Ground motion model is:

$$\log Y = a + bM - \log R + dR$$

where $T = \sqrt{D^2 + h^2}$

where $Y$ is in $\text{cms}^{-2}$, $a = 0.72$, $b = 0.44$, $d = -0.00231$, $h = 4.5$ and $\sigma = 0.28$.

• Records from soil or alluvium sites.

• All records corrected.

• Note that scatter can be reduced by increasing number of records used (especially in near field), improving all seismological and local site parameters and increasing number of variables (especially in near field and those modelling local site behaviour) but that this requires much more information than is available.

3.146 Takahashi et al. (2000)

• Ground motion model is:

$$\log_{10}[y] = aM - bx - \log_{10}(x + c10^{dM}) + e(h - h_c)\delta_h + S_k$$

where $y$ is in $\text{cms}^{-2}$, $a = 0.446$, $b = 0.00350$, $c = 0.012$, $d = 0.446$, $e = 0.00665$, $S = 0.941$, $S_R = 0.751$, $S_H = 0.901$, $S_M = 1.003$, $S_S = 0.995$, $\sigma_T = \sqrt{\sigma^2 + \tau^2}$ where $\sigma = 0.135$ (intra-event) and $\tau = 0.203$ (inter-event), $h_c$ is chosen as 20 km because gave positive depth term.

• Use four site categories:

$S_k = S_R$ Rock

$S_k = S_H$ Hard soil

$S_k = S_M$ Medium soil

$S_k = S_S$ Soft soil

Note site conditions for many stations are uncertain. $S$ is the mean site term for all data.

• Note ISC focal depths, $h$, significant reduce prediction errors compared with JMA depths. $\delta_h = 1$ for $h \geq h_c$ and $\delta_h = 0$ otherwise.
• Most Japanese data from $x > 50$ km.

• Use 166 Californian and Chilean (from 2 earthquakes) records to control model in near source.

• Due to lack of multiple records from many sites and because $c$ and $d$ require near-source records use a maximum likelihood regression method of two steps. Firstly, find all coefficients using all data except those from sites with only one record associated with them and unknown site class. Next, use individual site terms for all sites so as to reduce influence of uncertainty because of approximate site classifications and find $a$, $b$, $c$ and site terms using $c$ and $d$ from first step.

• Intra-event and inter-event residuals decrease with increasing magnitude.

• Conclude variation in residuals against distance is due to small number of records at short and large distances.

• Individual site factors means prediction error propagates into site terms when number of records per station is very small.

• Note model may not be suitable for seismic hazard studies because model prediction errors are partitioned into $\sigma_T$ and mean site terms for a given site class. Suitable model can be derived when accurate site classifications are available.

3.147 Wang & Tao (2000)

• Ground motion model is:

$$\log Y = C + (\alpha + \beta M) \log(R + R_0)$$

where $Y$ is in $\text{cms}^{-2}$, $C = 4.053$, $\alpha = -2.797$, $\beta = 0.251$, $R_0 = 8.84$ and $\sigma = 0.257$.

• Use same data as Joyner & Boore (1981), see Section 3.27.

• Use a two-stage method based on Joyner & Boore (1981). Firstly fit data to $\log Y = C + \sum_{i=1}^{n}(a_i E_i) \log(R_i + R_0)$, where $E_i = 1$ for records from $i$th earthquake and $E_i = 0$ otherwise, to find $C$ and $a_i$ for each earthquake. Next fit $a = \alpha + \beta M$ to find $\alpha$ and $\beta$ using $a_i$ from first stage.

3.148 Chang et al. (2001)

• Ground motion model for shallow crustal earthquakes is:

$$\ln A = c_1 + c_2 M - c_3 \ln D_p - (c_4 - c_5 D_p) \ln D_e$$

where $A$ is in $\text{cms}^{-2}$, $c_1 = 2.8096$, $c_2 = 0.8993$, $c_3 = 0.4381$, $c_4 = 1.0954$, $c_5 = 0.0079$ and $\sigma = 0.60$.

Ground motion model for subduction earthquakes is:

$$\ln A = c'_1 + c'_2 M - c'_3 \ln D_p - c'_4 \ln D_h$$

where $A$ is in $\text{cms}^{-2}$, $c'_1 = 4.7141$, $c'_2 = 0.8468$, $c'_3 = 0.17451$, $c'_4 = 1.2972$ and $\sigma = 0.56$. 
3. Summary of published attenuation relations for peak ground acceleration

- Note that there is limited site information available for strong-motion stations in Taiwan so do not consider local site effects.

- Use strong-motion data from Central Weather Bureau from 1994 to 1998 because it is more numerous and of better quality than older data.

- Separate earthquakes into shallow crustal and subduction earthquakes because of different seismic attenuation and seismogenic situation for the two types of earthquake.

- Shallow crustal earthquakes are mostly due to continental deformation, shallow collision or back-arc opening or are the uppermost interface earthquakes. Focal depths depth between 1.1 and 43.7 km with most shallower than 20 km. Most records from earthquakes with $4.5 \leq M_w \leq 6.0$.

- Subduction earthquakes are located in the Wadati-Benioff zone or the deep lateral collision zone and are principally intraslab. Focal depth between 39.9 and 146.4 km.

- Do not use records from earthquakes associated with coseismic rupture because they have complex near-field source effects.

- To avoid irregularly large amplitudes at great distances reject distant data predicted to be less than trigger level plus 1 standard deviation using this threshold formula: $a M_w - b \ln D + c \geq \ln V$, where $V$ is geometric mean of PGA equal to threshold plus 1 standard deviation. For shallow crustal earthquakes: $a = 0.64$, $b = 0.83$, $c = 2.56$ and $V = 6.93$ and for subduction earthquakes: $a = 0.76$, $b = 1.07$, $c = 3.13$ and $V = 6.79$.

- For shallow crustal earthquakes examine effect of focal depth on seismic attenuation by finding geometric attenuation rate using epicentral distance, $D_e$, for earthquakes with 5 km depth intervals. Find that deeper earthquakes have slower attenuation than shallow earthquakes. Therefore assume ground motion, $A$, is product of $f_{source}$ (source effects) and $f_{geometrical-spreading}$ (geometrical spreading effects) where $f_{source} = C_1 \exp(c_2 M)/D_p^{-c_3}$ and $f_{geometrical-spreading} = D_e^{-(c_4-c_5)D_p}$ where $D_p$ is focal depth.

- For subduction earthquakes examine effect of focal depth in the same way as done for shallow crustal earthquakes but find no effect of focal depth on attenuation rate. Therefore use $f_{geometrical-spreading} = D_h^{-c_4}$.

- Plot residuals of both equations against distance and find no trend.

- Note that it is important to separate subduction and shallow crustal earthquakes because of the different role of focal depth and attenuation characteristics.

- Plot residual maps of ground motion for Taiwan and find significant features showing the important effect of local structures on ground motion.
3. Summary of published attenuation relations for peak ground acceleration

3.149 Lussou et al. (2001)

- Ground motion model is:
  \[ \log \text{PSA}(f) = a(f)M + b(f)R - \log R + c(i, f) \]
  where \( \text{PSA}(f) \) is in \( \text{cms}^{-2} \), \( a(f) = 3.71 \times 10^{-1} \), \( b(f) = -2.54 \times 10^{-3} \), \( c(A, f) = 0.617 \), \( c(B, f) = 0.721 \), \( c(C, f) = 0.845 \), \( c(D, f) = 0.891 \) and \( \sigma = 3.13 \times 10^{-1} \).

- Use four site categories, based on \( V_{s,30} \) (average shear-wave velocity in top 30 m) as proposed in Eurocode 8:
  - A \( V_{s,30} > 800 \text{ ms}^{-1} \). Use \( c(A, f) \). 14 records.
  - B \( 400 < V_{s,30} \leq 800 \text{ ms}^{-1} \). Use \( c(B, f) \). 856 records.
  - C \( 200 < V_{s,30} \leq 400 \text{ ms}^{-1} \). Use \( c(C, f) \). 1720 records.
  - D \( 100 < V_{s,30} \leq 200 \text{ ms}^{-1} \). Use \( c(D, f) \). 421 records.

- Good determination of site conditions between shear-wave velocities have been measured down to 10 to 20 m at every site. Extrapolate shear-wave velocity data to 30 m to find \( V_{s,30} \). \( V_{s,30} \) at stations is between about 50 ms\(^{-1}\) and about 1150 ms\(^{-1}\).


- All data from free-field sites.

- No instrument correction needed or applied.

- Use data from earthquakes with \( M_{\text{JMA}} > 3.5 \) and focal depth < 20 km because want to compare results with Ambraseys et al. (1996) and Boore et al. (1997). Also this criteria excludes data from deep subduction earthquakes and data that is not significant for seismic hazard studies.

- Homogeneous determination of JMA magnitude and hypocentral distance.

- Roughly uniform distribution of records with magnitude and distance.

- Assume pseudo-spectral acceleration for 5% damping at 0.02 s equals PGA.

- Note equation valid for \( 3.5 \leq M_{\text{JMA}} \leq 6.3 \) and \( 10 \leq d_h \leq 200 \text{ km} \).

- Find inclusion of site classification has reduced standard deviation.

3.150 Chen & Tsai (2002)

- Ground motion model is:
  \[ \log_{10} \text{PGA} = \theta_0 + \theta_1 M + \theta_2 M^2 + \theta_3 R + \theta_4 \log_{10}(R + \theta_5 10^{\theta_6 M}) \]
where PGA is in $\text{cms}^{-2}$, $\theta_0 = -4.366 \pm 2.020$, $\theta_1 = 2.540 \pm 0.714$, $\theta_2 = -0.172 \pm 0.0611$, $\theta_3 = 0.00173 \pm 0.000822$, $\theta_4 = -1.845 \pm 0.224$, $\theta_5 = 0.0746 \pm 0.411$, $\theta_6 = 0.221 \pm 0.405$, $\sigma_e^2 = 0.0453 \pm 0.0113$ (earthquake-specific variance), $\sigma_s^2 = 0.0259 \pm 0.00699$ (site-specific variance) and $\sigma_r^2 = 0.0297 \pm 0.00235$ (record-specific variance). $\pm$ signifies the estimated standard errors.

- Records from 45 stations on rock and firm soil. All sites have more than two records.
- Use a new estimation procedure where the residual variance is decomposed into components due to various source of deviations. Separate variance into earthquake-to-earthquake variance, site-to-site variance and the remainder.
- Proposed method does not require additional regression or searching procedures.
- Perform a simulation study and find proposed procedure yields estimates with smaller biases and take less computation time than do other similar regression techniques.
- Visually examine the equation for various magnitude values before regressing.

3.151 Gregor et al. (2002)

- Ground motion model is (their model D):

$$\ln GM = \theta_1 + \theta_2 M + (\theta_3 + \theta_4 M) \ln[D + \exp(\theta_5)] + \theta_6 (1 - S) + \theta_7 (M - 6)^2 + \theta_8 F + \theta_9 / \tanh(D + \theta_{10})$$

where GM is in $g$, $\theta_1 = 4.31964$, $\theta_2 = -0.00175$, $\theta_3 = 2.40199$, $\theta_4 = 0.19029$, $\theta_5 = 2.14088$, $\theta_6 = 0.09754$, $\theta_7 = -0.21015$, $\theta_8 = 0.38884$, $\theta_9 = 0.29732$, $\theta_{10} = 448.88360$, $\sigma = 0.5099$ (intra-event) and $\tau = 0.4083$ (inter-event) for horizontal PGA using the static dataset without the Chi-Chi data and $\theta_1 = 1.50813$, $\theta_2 = 0.15024$, $\theta_3 = 2.52562$, $\theta_4 = 0.17143$, $\theta_5 = 2.12429$, $\theta_6 = 0.10517$, $\theta_7 = -0.16655$, $\theta_8 = 0.22243$, $\theta_9 = -0.11214$, $\theta_{10} = 19.85830$, $\sigma = 0.5141$ (intra-event) and $\tau = 0.4546$ (inter-event) for vertical PGA using the static dataset without the Chi-Chi data. Coefficients are also given for the three other models and for both the dynamic and the static datasets but are not reported here due to lack of space.

- Use two site categories:
  - $S = 0$ Soil: includes sites located on deep broad and deep narrow soil deposits.
  - $S = 1$ Rock: includes sites that are located on shallow stiff soil deposits;

- Use three rupture mechanism categories:
  - $F = 0$ Strike-slip, 39 earthquakes, 387 records;
  - $F = 0.5$ Reverse/oblique, 13 earthquakes, 194 records;
  - $F = 1$ Thrust, 16 earthquakes, 412 records.

- Process records using two procedures as described below.
1. Use the standard PEER procedure with individually chosen filter cut-offs.
2. Fit the original integrated velocity time-history with three different functional forms (linear in velocity; bilinear, piecewise continuous function; and quadratic in velocity). Choose the ‘best-fit’ result and view it for reasonableness. Differentiate the velocity time-history and then low-pass filter with a causal Butterworth filter with cut-offs about 50 Hz.

- PGA values from the two processing techniques are very similar.
- Investigate using a nonlinear model for site response term but the resulting models did not improve the fit.
- Also try three other functional forms:
  \[
  \ln(GM) = \theta_1 + \theta_2 M + \theta_3 \ln[D + \theta_4 \exp(\theta_5 M)] + \theta_6 (1 - S) + \theta_7 F \quad \text{model A}
  \]
  \[
  \ln(GM) = \theta_1 + \theta_2 M + (\theta_3 + \theta_4 M) \ln[D + \exp(\theta_5)] + \theta_6 (1 - S) + \theta_7 (M - 6)\theta_8 F \quad \text{model B}
  \]
  \[
  \ln(GM) = \theta_1 + \theta_2 M + \theta_3 \ln[D + \exp(\theta_5 M)] + \theta_6 (1 - S) + \theta_7 F + \theta_8 / \tanh(D + \theta_9) \quad \text{model C}
  \]
  which all give similar standard deviations and predictions but prefer model D.
- Models oversaturate slightly for large magnitudes at close distances. Therefore recommend that the PGA equations are not used because this oversaturation is based on very little data.
- Because the Chi-Chi short period ground motions may be anomalous relative to California they develop equations including and excluding the Chi-Chi data, which only affects predictions for large magnitudes \((M > 7.5)\).


- Ground motion model is:
  \[
  \ln Y = b_1 + b_2 (M - 6) + b_3 (M - 6)^2 + b_5 \ln r + b_V \ln(V_S/V_A)
  \]
  where \(r = (c_{la}^2 + h^2)^{1/2}\)

  where \(Y\) is in \(g\), \(b_1 = -0.682\), \(b_2 = 0.253\), \(b_3 = 0.036\), \(b_5 = -0.562\), \(b_V = -0.297\), \(V_A = 1381\, \text{ms}^{-1}\), \(h = 4.48\) and \(\sigma = 0.562\).

- Use three site categories:

  - Soft soil Average shear-wave velocity, \(V_S\), is 200\,\text{ms}^{-1}. 40 records.
  - Soil Average shear-wave velocity, \(V_S\), is 400\,\text{ms}^{-1}. 24 records.
  - Rock Average shear-wave velocity, \(V_S\), is 700\,\text{ms}^{-1}. 29 records.

  Actual shear-wave velocities and detailed site descriptions are not available for most stations in Turkey. Therefore estimate site classification by analogy with information in similar geologic materials. Obtain type of geologic material in number of ways: consultation with geologists at Earthquake Research Division of Ministry of Public Works and Settlement, various geological maps, past earthquake reports and geological references prepared for Turkey.
• Only used records from small earthquakes recorded at closer distances than large earthquakes to minimize the influence of regional differences in attenuation and to avoid the complex propagation effects coming from longer distances.

• Only use records from earthquakes with \( M_w \gtrsim 5.0 \) to emphasize ground motions of engineering significance and to limit analysis to more reliably recorded earthquakes.

• During regression lock magnitudes within \( \pm 0.25 \) magnitude unit bands centred at halves or integer magnitudes to eliminate errors coming from magnitude determination.

• Note that use of epicentral distance for small earthquakes does not introduce significant bias because dimensions of rupture area of small earthquakes are usually much smaller than distance to recording stations.

• Examine peak ground motions from the small number of normal- (14 records) and reverse-faulting (6 records) earthquakes in set and find that they were not significantly different from ground motions from strike-slip earthquakes (73 records). Therefore combine all data.

• Records mainly from small buildings built as meteorological stations up to three stories tall. Note that this modifies the recorded accelerations and hence increases the uncertainty.

• Exclude data from aftershocks (mainly of the Kocaeli and Duzce earthquakes) because it was from free-field stations and did not want to mix it with the data from the non-free-field records.

• Exclude a few records for which PGA of mainshock is \( \lesssim 0.04 \text{ g} \).

• Note that there is limited data and the data is poorly distributed. Also note that there is near-total lack of knowledge of local geology and that some of the records could be affected by the building in which the instrument was housed.

• More than half the records (49 records, 53\% of total) are from two \( M_w > 7 \) earthquakes (Kocaeli and Duzce) so the results are heavily based on the ground motions recorded in these two earthquakes.


• Ground motion model is:

\[
Y = C_1 \exp(C_2 M)((R + C_3 \exp(C_4 M))^{C_5}) + C_6 S
\]

where \( Y \) is in \( \text{g} \), \( C_1 = 0.040311, C_2 = 0.417342, C_3 = 0.001, C_4 = 0.65, C_5 = -0.351119 \) and \( C_6 = -0.035852 \) for horizontal PGA and \( C_1 = 0.0015, C_2 = 0.8548, C_3 = 0.001, C_4 = 0.4, C_5 = -0.463 \) and \( C_6 = 0.0006 \) for vertical PGA.

• Uses two site categories:

\( S = 0 \) Rock, site categories I and II of Iranian building code.

\( S = 1 \) Soil, site categories III and IV of Iranian building code.
• Selection criteria are: i) causative earthquake, earthquake fault (if known) and respective parameters are determined with reasonable accuracy, ii) PGA of at least one component > 50 gal, iii) records from free-field conditions or ground level of low-rise buildings (≤ three stories), iv) some aftershocks have been eliminated to control effect of a few large earthquakes and v) records have been processed with acceptable filter parameters.

• Regresses directly on $Y$ not on logarithm of $Y$. Therefore does not calculate standard deviation in normal way. Considers the deviation of individual records from predictive equations as being PGA dependent. Finds that a sigmoidal model fits the data well. Therefore

$$Y = \frac{ab + cx^d}{b + x^d}$$

where $Y$ is the error term and $x$ is the predicted ground motion, $a = 0.038723$, $b = 0.00207$, $c = 0.29094$ and $d = 4.97132$ for horizontal PGA and $a = 0.00561$, $b = 0.0164$, $c = 0.1648$ and $d = 1.9524$ for vertical PGA.

3.154 Margaris et al. (2002a) & Margaris et al. (2002b)

• Ground motion model is:

$$\ln Y = c_0 + c_1 M_w + c_2 \ln(R + R_0) + c_3 S$$

where $Y$ is in $\text{cms}^{-2}$, $c_0 = 4.16$, $c_1 = 0.69$, $c_2 = -1.24$, $R_0 = 6$, $c_3 = 0.12$ and $\sigma = 0.70$.

• Use three site categories:

$S = 0$ NEHRP and UBC category B. 145 records.

$S = 1$ NEHRP and UBC category C. 378 records.

$S = 2$ NEHRP and UBC category D. 221 records.

• Selection criteria are: a) earthquake has $M_w \geq 4.5$, b) PGA $\geq 0.05$ g and c) PGA $< 0.05$ g but another record from same earthquake has PGA $\geq 0.05$ g.

• Records mainly from normal faulting earthquakes.

• Exclude data recorded in buildings with four stories or higher.

• Automatically digitize records and process records homogenously, paying special attention to the filters used.

• Correlation between $M_w$ and $R$ in set of records used. For $4.5 \leq M_w \leq 5.0$ records exist at $R \leq 40$ km and for larger magnitudes records exist at intermediate and long distances. For $M_w > 6.0$ there is a lack of records for $R < 20$ km.

• Use a two step regression method. In first step use all records to find $c_1$. In second step use records from earthquakes with $M_w \geq 5.0$ to find $c_0$, $c_2$ and $c_3$.

• Adopt $R_0 = 6$ km because difficult to find $R_0$ via regression due to its strong correlation with $c_2$. This corresponds to average focal depth of earthquakes used.
3. Summary of published attenuation relations for peak ground acceleration

- Also try ground motion model: \( \ln Y = c'_0 + c'_1 M_w + c'_2 \ln(R^2 + h_0^2)^{1/2} + c'_3 S \). Coefficients are: 
  \( c'_0 = 3.52, c'_1 = 0.70, c'_2 = -1.14, h_0 = 7 \text{ km (adopted)}, c'_3 = 0.12 \) and \( \sigma = 0.70 \).

- Find no apparent trends in residuals w.r.t. distance.

- Due to distribution of data, equations valid for \( 5 \leq R \leq 120 \text{ km} \) and \( 4.5 \leq M_w \leq 7.0 \).

### 3.155 Schwarz et al. (2002)

- Ground motion model is:
  \[
  \log_{10} a_{H(V)} = c_1 + c_2 M_L + c_4 \log_{10}(r) + c_R S_R + c_A S_A + c_S S_S \\
  \text{where } r = \sqrt{R^2 + h_0^2}
  \]
  where \( a_{H(V)} \) is in g, \( c_1 = -3.0815, c_2 = 0.5161, c_4 = -0.9501, c_R = -0.1620, c_A = -0.1078, c_S = 0.0355, h_0 = 2.0 \) and \( \sigma = 0.3193 \) for horizontal PGA and \( c_1 = -2.8053, c_2 = 0.4858, c_4 = -1.1842, c_R = -0.1932, c_A = -0.0210, c_S = 0.0253, h_0 = 2.5 \) and \( \sigma = 0.3247 \) for vertical PGA.

- Use three site categories:
  
  R Rock, subsoil classes A1, (A2) \( V_s > 800 \text{ ms}^{-1} \) (according to E DIN 4149) or subsoil class B (rock) \( 760 < V_s \leq 1500 \text{ ms}^{-1} \) (according to UBC 97). \( S_R = 1, S_A = 0, S_S = 0 \). 59 records.

  A Stiff soil, subsoil classes (A2), B2, C2 \( 350 \leq V_s \leq 800 \text{ ms}^{-1} \) (according to E DIN 4149) or subsoil class C (very dense soil and soft rock) \( 360 < V_s \leq 760 \text{ ms}^{-1} \) (according to UBC 97). \( S_A = 1, S_R = 0, S_S = 0 \). 88 records.

  S Soft soil, subsoil classes A3, B3, C3 \( V_s < 350 \text{ ms}^{-1} \) (according to E DIN 4149) or subsoil class D (stiff clays and sandy soils) \( 180 < V_s \leq 360 \text{ ms}^{-1} \) (according to UBC 97). \( S_S = 1, S_R = 0, S_A = 0 \). 536 records.

KOERI stations classified using UBC 97 and temporary stations of German TaskForce classified using new German code E DIN 4149. Classify temporary stations of German TaskForce using microtremor H/V spectral ratio measurements by comparing shapes of H/V spectral ratios from microtremors to theoretical H/V spectral ratios as well as with theoretical transfer functions determined for idealized subsoil profiles.

- Use Kocaeli aftershock records from temporary German TaskForce stations (records from earthquakes with \( 1 \lesssim M_L < 4.9 \) and distances \( R_e < 70 \text{ km}, 538 \) records) and from mainshock and aftershocks records from Kandilli Observatory (KOERI) stations (\( 4.8 \leq M_L \leq 7.2 \) and distances \( 10 \leq R_e \leq 250 \text{ km}, 145 \) records).

- Visually inspect all time-histories and only use those thought to be of sufficiently good quality.

- Baseline correct all records.
• Use technique of Ambraseys et al. (1996) to find the site coefficients $c_R$, $c_A$ and $c_S$, i.e. use residuals from regression without considering site classification.

• Note that equations may not be reliable for rock and stiff soil sites due to the lack of data and that equations probably only apply for $2 \leq M_L \leq 5$ due to lack of data from large magnitude earthquakes.

3.156 Stamatovska (2002)

• Ground motion model is:

$$\ln \text{PGA} = b' + b_M M + b_R \ln \left\{ \left[ \left( \frac{R_e}{\rho} \right)^2 + h^2 \right]^{1/2} + C \right\}$$

where PGA is in $\text{cms}^{-2}$. For Bucharest azimuth $b' = -0.21056$, $b_M = 1.29099$, $b_R = -0.80404$, $C = 40$ and $\sigma = 0.52385$, for Valeni azimuth $b' = -1.52412$, $b_M = 1.42459$, $b_R = -0.70275$, $C = 40$ and $\sigma = 0.51389$ and for Cherna Voda $b' = 4.16765$, $b_M = 1.11724$, $b_R = -1.44067$, $C = 40$ and $\sigma = 0.47607$.

• Focal depths, $h$, between 89 and 131 km.

• Incomplete data on local site conditions so not included in study.

• Some strong-motion records are not from free-field locations.

• Uses $\rho$ to characterise the non-homogeneity of region. Includes effect of instrument location w.r.t. the main direction of propagation of seismic energy, as well as the non-homogeneous attenuation in two orthogonal directions. $\rho = \sqrt{(1 + tg^2\alpha)/(a^2 + tg^2\alpha)}$ where $\alpha$ is angle between instrument and main direction of seismic energy or direction of fault projection on surface and $a$ is parameter defining the non-homogeneous attenuation in two orthogonal directions, or relation between the semi-axes of the ellipse of seismic field.

• Uses a two step method. In first step derive equations for each earthquake using $\ln \text{PGA} = b_0' + b_1 \ln(R_e/\rho)$. In the second step the complete ground motion model is found by normalizing separately for each earthquake with a value of $\rho$ defined for that earthquake according to the location for which the equation was defined.

• Notes that there is limited data so coefficients could be unreliable.

• Strong-motion records processed by different institutions.


• Ground motion model is:

$$\log y = C_1 + C_2 M_s + C_4 \log r + C_A S_A + C_S S_S$$

where $r = \sqrt{d^2 + h_0^2}$
where $y$ is in $\text{cms}^{-2}$, $C_1 = 2.080$, $C_2 = 0.214$, $h_0 = 7.27$, $C_4 = -1.049$, $C_A = 0.058$, $C_S = 0.085$ and $\sigma = 0.27$.

- Use three site categories:
  - S Soft soil, $V_{s,30} \leq 360 \text{ ms}^{-1}$. $S_S = 1$, $S_A = 0$. 25% of records.
  - A Stiff soil, $360 < V_{s,30} < 750 \text{ ms}^{-1}$. $S_A = 1$, $S_S = 0$. 50% of records.
  - R Rock, $V_{s,30} \geq 750 \text{ ms}^{-1}$. $S_S = 0$, $S_A = 0$. 25% of records.

If no $V_{s,30}$ measurements at station then use agency classifications.

- Supplement dataset of Bommer et al. (1998) with 66 new records using same selection criteria as Bommer et al. (1998) with a lower magnitude limit of $M_s = 5.5$. Remove 3 records from Bommer et al. (1998) with no site classifications.

- Roughly uniform distribution of records w.r.t. magnitude and distance. New data contributes significantly to large magnitude and near-field ranges.

- Correct records using an elliptical filter selecting an appropriate low-frequency cut-off, $f_L$, individually for each record using the criterion of Bommer et al. (1998).

- Plot PGA against $f_L$ for two pairs of horizontal components of ground motion from the BOL and DZC stations from the Duzce earthquake (12/11/1999). Record from BOL was recorded on a GSR-16 digital accelerograph and that from DZC was recorded on a SMA-1 analogue accelerograph. Find PGA is stable for low-frequency cut-offs up to at least 0.4 Hz for the selected records.


- Ground motion model is:
  
  $$\log_{10}(Y) = a + bM + c \log_{10}(R^2 + h^2)^{1/2} + e\Gamma$$

  where $Y$ is in $\text{g}$, $a = -1.632$, $b = 0.304$, $c = -1$, $h = 2.7$, $e = 0$ and $\sigma = 0.275$.

- Use two site categories:
  - Soil $V_{s,30} \leq 750 \text{ ms}^{-1}$, $\Gamma = 0$.
  - Rock $V_{s,30} > 750 \text{ ms}^{-1}$, $\Gamma = 1$.

- Note that amount of data available for the Umbria-Marche area in central Italy is sufficiently large to perform statistical analysis at regional scale.

- Focal depths between 2 and 8.7 km. Exclude data from an earthquake that occurred at 47 km.

- Select only records from earthquakes with $M_L \geq 4.5$ recorded at less than 100 km.
3. Summary of published attenuation relations for peak ground acceleration

- Exclude data from Nocera Umbra station because it shows a strong amplification effect due to the presence of a sub-vertical fault and to highly fractured rocks.

- Uniformly process records using BAP (Basic strong-motion Accelerogram Processing software). Instrument correct records and band-pass filter records using a high-cut filter between 23 and 28 Hz and a bi-directional Butterworth low-cut filter with corner frequency of 0.4 Hz and rolloff parameter of 2.

- Note that can use $M_L$ because it does not saturate until about 6.5 and largest earthquake in set is $M_L = 5.9$.

- More than half of records are from earthquakes with $M_L \leq 5.5$.

- State that equations should not be used for $M_L > 6$ because of lack of data.

- Use similar regression method as Ambraseys et al. (1996) to find site coefficient, $e$.

3.159 Alarcón (2003)

- Ground motion model is (his model 2):

\[
\log(a) = A + BM + Cr + D\log(r)
\]

where $a$ is in gal, $A = 5.5766$, $B = 0.06052$, $C = 0.0039232$, $D = -2.524849$ and $\sigma = 0.2597$.

- Due to lack of information classify stations as soil or rock (stations with $\leq 10$ m of soil). Only derives equation for rock.

- Uses data from National Accelerometer Network managed by INGEOMINAS from 1993 to 1999.

- Exclude data from subduction zone, focal depths $h > 60$ km.

- Focal depths, $11.4 \leq h \leq 59.8$ km.

- Exclude data from earthquakes with $M_L < 4.0$.

- Exclude data with PGA $< 5$ gal. $5 \leq$ PGA $\leq 100.1$ gal.

- Derive equations using four different models:

\[
a = C_1 e^{C_2 M (R + C_3)}^{-C_4}
\]

\[
\log(a) = A + BM + Cr + D\log(r)
\]

\[
\log(y) = C_0 + C_1(M - 6) + C_2(M - 6) + C_3\log(r) + C_4r
\]

\[
\ln(a) = a + bM + d\ln(R) + qh
\]
3.160 Alchalbi et al. (2003)

- Ground motion model is:
  \[ \log A = b_0 + b_1 M_c + b_r \log r \]
  where \( A \) is in g, \( b_0 = -1.939, b_1 = 0.278, b_2 = -0.858 \) and \( \sigma = 0.259 \) for horizontal PGA and \( b_0 = -2.367, b_1 = 0.244, b_2 = -0.752 \) and \( \sigma = 0.264 \) for vertical PGA.

- Use two site categories: bedrock (\( S = 0 \)) and sediments (\( S = 1 \)) but found the coefficient \( b_3 \) in the term +\( b_3 S \) is close to zero so repeat analysis constraining \( b_3 \) to 0.

- Records from SSA-1 instruments.

- Carefully inspect and select records.

- Do not use record from the Aqaba (\( M = 7.2 \)) earthquake because it is very far and was only recorded at one station.

- Do not use records from buildings or dams because they are affected by response of structure.

- Instrument correct records. Apply bandpass filter (0.1 to 25 Hz) to some low-quality records.

- Do regression using only records from earthquakes with \( 4.8 \leq M \leq 5.8 \) and also using only records from earthquakes with \( 3.5 \leq M \leq 4.5 \).

- Most data from \( M \leq 5 \) and \( r \leq 100 \) km.

- Note that use a small set of records and so difficult to judge reliability of derived equation.


- Ground motion model is:
  \[ \log Y = c_1 + c_2 M + c_3 h + c_4 R - g \log R + c_5 s_l S_C + c_6 s_l S_D + c_7 s_l S_E \]
  where \( R = \sqrt{D_{\text{fault}}^2 + \Delta^2} \)
  \[ \Delta = 0.00724 \times 10^{0.507M} \]
  \[ s_l = \begin{cases} 1 & \text{for } PGA_{rx} \leq 100 \text{ cms}^{-1} \text{or } f \leq 1 \text{ Hz} \\ 1 - (f - 1)(PGA_{rx} - 100)/400 & \text{for } 100 < PGA_{rx} < 500 \text{ cms}^{-1} (1 \text{ Hz} < f < 2 \text{ Hz}) \\ 1 - (f - 1) & \text{for } PGA_{rx} \geq 500 \text{ cms}^{-1} (1 \text{ Hz} < f < 2 \text{ Hz}) \\ 1 - (PGA_{rx} - 100)/400 & \text{for } 100 < PGA_{rx} < 500 \text{ cms}^{-1} (f \geq 2 \text{ Hz}) \\ 0 & \text{for } PGA_{rx} \geq 500 \text{ cms}^{-1} (f \geq 2 \text{ Hz}) \end{cases} \]

where \( Y \) is in cms\(^{-2} \), \( f \) is frequency of interest, \( PGA_{rx} \) is predicted PGA on NEHRP B sites, \( c_1 = 2.991, c_2 = 0.03525, c_3 = 0.00759, c_4 = -0.00206, \sigma_1 = 0.20 \) (intra-event) and \( \sigma_2 = 0.11 \) (inter-event) for interface events and \( c_1 = -0.04713, c_2 = 0.6909, c_3 = 0.01130, c_4 = -0.00202, \sigma_1 = 0.23 \) and \( \sigma_2 = 0.14 \) for in-slab events and \( c_5 = 0.19, c_6 = 0.24, c_7 = 0.29 \) for all events. \( g = 10^{1.2 - 0.18M} \) for interface events and \( g = 10^{0.301 - 0.01M} \) for in-slab
events. Recommended revised $c_1$ for interface events in Cascadia is 2.79 and in Japan 3.14, recommended revised $c_1$ for in-slab events in Cascadia is $-0.25$ and in Japan 0.10.

- Use four site categories:
  
  B NEHRP site class B, $V_{s,30} > 760 \text{ms}^{-1}$. $S_C = 0$, $S_D = 0$ and $S_E = 0$.
  
  C NEHRP site class C, $360 < V_{s,30} \leq 760 \text{ms}^{-1}$. $S_C = 1$, $S_D = 0$ and $S_E = 0$.
  
  D NEHRP site class D, $180 \leq V_{s,30} \leq 360 \text{ms}^{-1}$. $S_D = 1$, $S_C = 0$ and $S_E = 0$.
  
  E NEHRP site class E, $V_{s,30} < 180 \text{ms}^{-1}$. $S_E = 1$, $S_C = 0$ and $S_D = 0$.

Stations in KNET were classified using shear-wave velocity profiles using an statistical method to extrapolate measured shear-wave velocities to depths up to 10–20 m to 30 m. Stations in Guerrero array assumed to be on rock, i.e. site class B. Broadband stations in Washington and British Columbia sited on rock ($V_{s,30} \approx 1100 \text{ms}^{-1}$), i.e. site class B. Strong-motion stations in Washington classified using map of site classes based on correlations between geology and $V_{s,30}$ in Washington, and verified at 8 stations using actual borehole measurements. Converted Youngs et al. (1997) Geomatrix classifications by assuming Geomatrix A=NEHRP B, Geomatrix B=NEHRP C, Geomatrix C/D=NEHRP D and Geomatrix E=NEHRP E using shear-wave velocity and descriptions of Geomatrix classification.

- Note that cannot develop equations using only Cascadia data because not enough data. Combine data of Crouse (1991) and Youngs et al. (1997) with additional data from Cascadia (strong-motion and broadband seismographic records), Japan (KNET data), Mexico (Guerrero array data) and El Salvador data.

- Classify event by type using focal depth and mechanism as:

  In-slab All earthquakes with normal mechanism. Earthquakes with thrust mechanism at depths $> 50 \text{km}$ or if occur on steeply dipping planes.
  
  Interface Earthquakes with thrust mechanism at depths $< 50 \text{km}$ on shallow dipping planes.

  Exclude events of unknown type.

- Exclude events with focal depth $h > 100 \text{km}$.

- Exclude events that occurred within crust above subduction zones.

- Use many thousands of extra records to explore various aspects of ground motion scaling with $M$ and $D_{\text{fault}}$.

- Data relatively plentiful in most important $M$-$D_{\text{fault}}$ ranges, defined according to deaggregations of typical hazard results. These are in-slab earthquakes of $6.5 \leq M \leq 7.5$ for $40 \leq D_{\text{fault}} \leq 100 \text{km}$ and interface earthquakes of $M \geq 7.5$ for $20 \leq D_{\text{fault}} \leq 200 \text{km}$.

- Data from KNET from moderate events at large distances are not reliable at higher frequencies due to instrumentation limitations so exclude KNET data from $M < 6$ at $D_{\text{fault}} > 100 \text{km}$ and for $M \geq 6$ at $D_{\text{fault}} > 200 \text{km}$. Excluded data may be reliable at low frequencies.
• Estimate $D_{\text{fault}}$ for data from Crouse (1991) and for recent data using fault length versus $M$ relations of Wells & Coppersmith (1994) to estimate size of fault plane and assuming epicentre lies above geometric centre of dipping fault plane. Verified estimates for several large events for which fault geometry is known.

• Perform separate regressions for interface and in-slab events because analyses indicated extensive differences in amplitudes, scaling and attenuation between two types.

• Experiment with a variety of functional forms. Selected functional form allows for magnitude dependence of geometrical spreading coefficient, $g$; the observed scaling with magnitude and amplitude-dependent soil nonlinearity.

• For $h > 100 \text{ km}$ use $h = 100 \text{ km}$ to prevent prediction of unrealistically large amplitudes for deeper earthquakes.

• $R$ is approximately equal to average distance to fault surface. $\Delta$ is defined from basic fault-to-site geometry. For a fault with length and width given by equations of Wells & Coppersmith (1994), the average distance to the fault for a specified $D_{\text{fault}}$ is calculated (arithmetically averaged from a number of points distributed around the fault), then used to determine $\Delta$. Magnitude dependence of $R$ arises because large events have a large spatial extent, so that even near-fault observation points are far from most of the fault. Coefficients in $\Delta$ were defined analytically, so as to represent average fault distance, not be regression. Although coefficients in $\Delta$ were varied over a wide range but did not improve accuracy of model predictions.

• Determine magnitude dependence of $g$ by preliminary regressions of data for both interface and in-slab events. Split data into 1 magnitude unit increments to determine slope of attenuation as a function of magnitude using only 1 and 2 s data and records with $50 \leq D_{\text{fault}} \leq 300 \text{ km}$ (50 km limit chosen to avoid near-source distance saturation effects). Within each bin regression was made to a simple functional form: $\log Y' = a_1 + a_2 M - g \log R + a_3 S$ where $Y' = Y \exp(0.001R)$, i.e. $Y$ corrected for curvature due to anelasticity, and $S = 0$ for NEHRP A or B and 1 otherwise. $g$ is far-field slope determined for each magnitude bin.

• Nonlinear soil effects not strongly apparent in database on upon examination of residuals from preliminary regressions, as most records have $\text{PGA} < 200 \text{ cms}^{-2}$, but may be important for large $M$ and small $D_{\text{fault}}$. To determine linear soil effects perform separate preliminary regressions for each type of event to determine $c_5$, $c_6$ and $c_7$ assuming linear response. Smooth these results (weighted by number of observations in each subset) to fix $c_5$, $c_6$ and $c_7$ (independent of earthquake type) for subsequent regressions. $sl$ was assigned by looking at residual plots and from consideration of NEHRP guidelines. Conclude that there is weak evidence for records with $\text{PGA}_{rx} > 100 \text{ cms}^{-2}$, for NEHRP E sites at periods $< 1 \text{ s}$. Use these observations to fix $sl$ for final regression.

• Final regression needs to be iterated until convergence because of use of $\text{PGA}_{rx}$ in definition of dependent variable.

• To optimize fit for $M$-$D_{\text{fault}}$ range of engineering interest limit final regression to data within: $5.5 \leq M < 6.5$ and $D_{\text{fault}} \leq 80 \text{ km}$, $6.5 \leq M < 7.5$ and $D_{\text{fault}} \leq 150 \text{ km}$ and $M \geq 7.5$ and
$D \leq 300\text{ km}$ for interface events and $6.0 \leq M < 6.5$ and $D_{\text{fault}} \leq 100\text{ km}$ and $M \geq 6.5$ and $D_{\text{fault}} \leq 200\text{ km}$ for in-slab events. These criteria refined by experimentation until achieved an optimal fit for events that are important for seismic hazard analysis. Need to restrict $M$-$D_{\text{fault}}$ for regression because set dominated by records from moderate events and from intermediate distances whereas hazard is from large events and close distances.

- Lightly smooth coefficients (using a weighted 3-point scheme) over frequency to get smooth spectral shape and allows for reliable linear interpolation of coefficients for frequencies not explicitly used in regression.

- In initial regressions, use a $M^2$ term as well as a $M$ term leading to a better fit over a linear magnitude scaling but lead to a positive sign of the $M^2$ rather than negative as expected. Therefore to ensure the best fit in the magnitude range that is important for hazard and constrained by data quadratic source terms refit to linear form. Linear model constrained to provide same results in range $7.0 \leq M \leq 8.0$ for interface events and $6.5 \leq M \leq 7.5$ for in-slab events. To ensure that non-decreasing ground motion amplitudes for large magnitudes: for $M > 8.5$ use $M = 8.5$ for interface events and for $M > 8.0$ use $M = 8.0$ for in-slab events.

- Calculate $\sigma$ based on records with $M \geq 7.2$ and $D_{\text{fault}} \leq 100\text{ km}$ for interface events and $M \geq 6.5$ and $D_{\text{fault}} \leq 100\text{ km}$ for in-slab events. These magnitude ranges selected to obtain the variability applicable for hazard calculations. Do not use KNET data when computing $\sigma$ because data appear to have greater high-frequency site response than data from same soil class from other regions, due to prevalence of sites in Japan with shallow soil over rock.

- Determine $\sigma_1$ using data for several well-recorded large events and determining average value. Then calculate $\sigma_2$ assuming $\sigma = \sqrt{\sigma_1^2 + \sigma_2^2}$.

- Examine residuals w.r.t. $D_{\text{fault}}$ using all data from $M \geq 5.5$ and $D_{\text{fault}} \leq 200\text{ km}$ and $M \geq 6.5$ and $D_{\text{fault}} \leq 300\text{ km}$. Find large variability but average residuals near 0 for $D_{\text{fault}} \leq 100\text{ km}$.

- Find significantly lower variability for $M \geq 7.2$ events ($\sigma = 0.2$–0.35 for larger events and $\sigma = 0.25$–0.4 for smaller events).

- Examine graphs and statistics of subsets of data broken down by magnitude, soil type and region. Find significant positive residuals for $M < 6.6$ due to use of linear scaling with magnitude. Accept positive residuals because small magnitudes do not contribute strongly to hazard.

- Find large positive residuals for class C sites for interface events (most records are from Japan) whereas residuals for class C sites for in-slab events (which are from both Japan and Cascadia) do not show trend. No other overwhelming trends. Differences in residuals for Japan and Cascadia class C sites likely due to differences in typical soil profiles in the two regions within the same NEHRP class. Sites in Japan are typically shallow soil over rock, which tend to amplify high frequencies, whereas in Cascadia most soil sites represent relatively deep layers over rock or till. Provide revised $c_1$ coefficients for Japan and Cascadia to model these differences.
• Note that debate over whether 1992 Cape Mendocino earthquake is a subduction zone or crustal earthquake. Excluding it from regressions has a minor effect on results, reducing predictions for interface events for $M < 7.5$.

3.162 Boatwright et al. (2003)

• Ground motion model is:

$$\log \text{PGA} = \psi(M) - \log g(r) - \eta'(M) r$$

where

$$\psi(M) = \psi_1 + \psi_2(M - 5.5) \quad \text{for} \quad M \leq 5.5$$
$$= \psi_1 + \psi_3(M - 5.5) \quad \text{for} \quad M > 5.5$$

$$\eta'(M) = \eta_1 \quad \text{for} \quad M \leq 5.5$$
$$= \eta_1 \times 10^{\rho(M-5.5)} \quad M > 5.5$$

$$g(r) = r \quad \text{for} \quad r \leq r_0 = 27.5\,\text{km}$$
$$= r_0(r/r_0)^{0.7} \quad \text{for} \quad r > r_0 = 27.5\,\text{km}$$

where $\psi_1 = 1.45 \pm 0.24$, $\psi_2 = 1.00 \pm 0.01$, $\psi_3 = 0.31 \pm 0.09$, $\eta_1 = 0.0073 \pm 0.0003$, $\rho = -0.30 \pm 0.06$, $\sigma_e = 0.170$ (inter-earthquake) and $\sigma_r = 0.361$ (intra-earthquake).

• Classify station into four classes using the NEHRP categories using geological maps:

  B Rock. Amplification from category C 0.79.
  C Soft rock or stiff soil. Amplification from category C 1.00.
  D Soft soil. Amplification from category C 1.35.
  E Bay mud. Amplification from category D 1.64.

The amplifications (from Boore et al. (1997)) are used to correct for site effects.

For some stations in the broadband Berkeley Digital Seismic Network, which are in seismic vaults and mine adits and therefore have low site amplifications, use one-half the above site amplifications.

• Use data from August 1999 and December 2002 from the northern California ShakeMap set of data. Extend set to larger earthquakes by adding data from nine previous large northern California earthquakes.

• Focal depths, $0.1 \leq h \leq 28.8\,\text{km}$.

• Use hypocentral distance because this distance is available to ShakeMap immediately after an earthquake. Note that this is a poor predictor of near-field ground motion from extended faults.

• Plot decay of PGA with distance for two moderate earthquakes ($M = 4.9$, $M = 3.9$) and find decay is poorly fit by a power-law function of distance and that fitting such an equation who require $\text{PGA} \propto r^{-2}$, which they believe is physically unrealistic for body-wave propagation.
• Find that PGAs flatten or even increase at large distances, which is believed to be due to noise. Hence use a magnitude-dependent limit of \( r_{\text{max}} = 100(M - 2) \leq 400 \text{ km} \), determined by inspecting PGA and PGV data for all events, to exclude problem data.

• Fit data from each event separately using \( \log \text{PGA} = \psi - \eta r - \log g(r) + \log s_{\text{BJF}} \). Find \( \eta \) varies between four groups: events near Eureka triple junction, events within the Bay Area, events near San Juan Bautista and those in the Sierras and the western Mojave desert.

• Use a numerical search to find the segmentation magnitude \( M' \). Choose \( M' = 5.5 \) as the segmentation magnitude because it is the lowest segmentation magnitude within a broad minimum in the \( \chi^2 \) error for the regression.

• Fit magnitude-dependent part of the equation to the PGA values scaled to 10 km and site class C.

• Note that the PGAs predicted are significantly higher than those given by equations derived by Joyner & Boore (1981) and Boore et al. (1997) because of use of hypocentral rather than fault distance.

• Recompute site amplifications relative to category C as: for B 0.84 \( \pm \) 0.03, for D 1.35 \( \pm \) 0.05 and for E 2.17 \( \pm \) 0.15.

3.163 Bommer et al. (2003)

• Ground motion model is:

\[
\log y = C_1 + C_2 M + C_4 \log(\sqrt{r^2 + h^2}) + C_A S_A + C_S S_S + C_N F_N + C_R F_R
\]

where \( y \) is in g, \( C_1 = -1.482, C_2 = 0.264, C_4 = -0.883, h = 2.473, C_A = 0.117, C_S = 0.101, C_N = -0.088, C_R = -0.021, \sigma_1 = 0.243 \) (intra-event) and \( \sigma_2 = 0.060 \) (inter-event).

• Use four site conditions but retain three (because only three records from very soft (L) soil which combine with soft (S) soil category):

- **R** Rock: \( V_s > 750 \text{ ms}^{-1} \), \( \Rightarrow S_A = 0, S_S = 0, 106 \) records.
- **A** Stiff soil: \( 360 < V_s \leq 750 \text{ ms}^{-1} \), \( \Rightarrow S_A = 1, S_S = 0, 226 \) records.
- **S** Soft soil: \( 180 < V_s \leq 360 \text{ ms}^{-1} \), \( \Rightarrow S_A = 0, S_S = 1, 81 \) records.
- **L** Very soft soil: \( V_s \leq 180 \text{ ms}^{-1} \), \( \Rightarrow S_A = 0, S_S = 1, 3 \) records.

• Use same data as Ambraseys et al. (1996).

• Use three faulting mechanism categories:

- **S** Strike-slip: earthquakes with rake angles (\( \lambda \)) \(-30 \leq \lambda \leq 30^\circ \) or \( \lambda \geq 150^\circ \) or \( \lambda \leq -150^\circ \), \( \Rightarrow F_N = 0, F_R = 0, 47 \) records.
N Normal: earthquakes with $-150 < \lambda < -30^\circ$, $\Rightarrow F_N = 1, F_R = 0$, 146 records.

R Reverse: earthquakes with $30 < \lambda < 150^\circ$, $\Rightarrow F_R = 1, F_N = 0$, 229 records.

Earthquakes classified as either strike-slip or reverse or strike-slip or normal depending on which plane is the main plane were included in the corresponding dip-slip category. Some records (137 records, 51 normal, 10 strike-slip and 76 reverse) from earthquakes with no published focal mechanism (80 earthquakes) were classified using the mechanism of the mainshock or regional stress characteristics.

- Try using criteria of Campbell (1997) and Sadigh et al. (1997) to classify earthquakes w.r.t. faulting mechanism. Also try classifying ambiguously classified earthquakes as strike-slip. Find large differences in the faulting mechanism coefficients with more stricter criteria for the rake angle of strike-slip earthquakes leading to higher $C_R$ coefficients.

- Note that distribution of records is reasonably uniform w.r.t. to mechanism although significantly fewer records from strike-slip earthquakes.

- Try to use two-stage maximum-likelihood method as employed by Ambraseys et al. (1996) but find numerical instabilities in regression.

- Also rederive mechanism-independent equation of Ambraseys et al. (1996) using one-stage maximum-likelihood method.


- Ground motion model is:

$$\ln Y = c_1 + f_1(M_w) + c_4 \ln \sqrt{f_2(M_w, r_{seis}, S)} + f_3(F) + f_4(S) + f_5(HW, F, M_w, r_{seis})$$

where

$$f_1(M_w) = c_2 M_w + c_3 (8.5 - M_w)^2$$

$$f_2(M_w, r_{seis}, S) = r_{seis}^2 + g(S)^2 (\exp [c_8 M_w + c_9 (8.5 - M_w)^2])^2$$

$$g(S) = c_8 + c_9 (S_{VFS} + S_{SR}) + c_7 S_{FR}$$

$$f_3(F) = c_{10} F_{RV} + c_{11} F_{TH}$$

$$f_4(S) = c_{12} S_{VFS} + c_{13} S_{SR} + c_{14} S_{FR}$$

$$f_5(HW, F, M_w, r_{seis}) = HW f_3(F) f_{HW}(M_w) f_{HW}(r_{seis})$$

$$HW = \begin{cases} 
0 & \text{for } r_{jb} \geq 5 \text{ km or } \delta > 70^\circ \\
(S_{VFS} + S_{SR} + S_{FR})(5 - r_{jb})/5 & \text{for } r_{jb} < 5 \text{ km and } \delta \leq 70^\circ 
\end{cases}$$

$$f_{HW}(M_w) = \begin{cases} 
0 & \text{for } M_w < 5.5 \\
M_w - 5.5 & \text{for } 5.5 \leq M_w \leq 6.5 \\
1 & \text{for } M_w > 6.5 
\end{cases}$$

$$f_{HW}(r_{seis}) = \begin{cases} 
c_{15} (r_{seis}/8) & \text{for } r_{seis} < 8 \text{ km} \\
c_{15} & \text{for } r_{seis} \geq 8 \text{ km} 
\end{cases}$$
where $Y$ is in g, $r_{jb}$ is the distance to the surface projection of rupture and $\Delta$ is the dip of the fault; for uncorrected horizontal PGA: $c_1 = -2.896$, $c_2 = 0.812$, $c_3 = 0.0$, $c_4 = -1.318$, $c_5 = 0.187$, $c_6 = 0.029$, $c_7 = -0.064$, $c_8 = 0.616$, $c_9 = 0$, $c_{10} = 0.179$, $c_{11} = 0.307$, $c_{12} = -0.062$, $c_{13} = -0.195$, $c_{14} = -0.320$, $c_{15} = 0.370$ and $\sigma = c_{16} - 0.07M_w$ for $M_w < 7.4$ and $\sigma = c_{16} - 0.518$ for $M_w \geq 7.4$ where $c_{17} = 0.964$ or $\sigma = c_{17} + 0.351$ for PGA $\leq 0.07$ g, $\sigma = c_{17} - 0.132 \ln(\text{PGA})$ for $0.07 < \text{PGA} < 0.25$ g and $\sigma = c_{17} + 0.183$ for PGA $\geq 0.25$ g where $c_{17} = 0.263$; for corrected horizontal PGA: $c_1 = -4.033$, $c_2 = 0.812$, $c_3 = 0.036$, $c_4 = -1.061$, $c_5 = 0.041$, $c_6 = 0.005$, $c_7 = -0.018$, $c_8 = 0.766$, $c_9 = 0.034$, $c_{10} = 0.343$, $c_{11} = 0.351$, $c_{12} = -0.123$, $c_{13} = -0.138$, $c_{14} = -0.289$, $c_{15} = 0.370$ and $\sigma = c_{16} - 0.07M_w$ for $M_w < 7.4$ and $\sigma = c_{16} - 0.518$ for $M_w \geq 7.4$ where $c_{17} = 0.920$ or $\sigma = c_{17} + 0.351$ for PGA $\leq 0.07$ g, $\sigma = c_{17} - 0.132 \ln(\text{PGA})$ for $0.07 < \text{PGA} < 0.25$ g and $\sigma = c_{17} + 0.183$ for PGA $\geq 0.25$ g where $c_{17} = 0.219$; for uncorrected vertical PGA: $c_1 = -2.807$, $c_2 = 0.756$, $c_3 = 0$, $c_4 = -1.391$, $c_5 = 0.191$, $c_6 = 0.044$, $c_7 = -0.014$, $c_8 = 0.544$, $c_9 = 0$, $c_{10} = 0.091$, $c_{11} = 0.223$, $c_{12} = -0.096$, $c_{13} = -0.212$, $c_{14} = -0.199$, $c_{15} = 0.630$ and $\sigma = c_{16} - 0.07M_w$ for $M_w < 7.4$ and $\sigma = c_{16} - 0.518$ for $M_w \geq 7.4$ where $c_{17} = 1.003$ or $\sigma = c_{17} + 0.351$ for PGA $\leq 0.07$ g, $\sigma = c_{17} - 0.132 \ln(\text{PGA})$ for $0.07 < \text{PGA} < 0.25$ g and $\sigma = c_{17} + 0.183$ for PGA $\geq 0.25$ g where $c_{17} = 0.302$; and for corrected vertical PGA: $c_1 = -3.108$, $c_2 = 0.756$, $c_3 = 0$, $c_4 = -1.287$, $c_5 = 0.142$, $c_6 = 0.046$, $c_7 = -0.040$, $c_8 = 0.587$, $c_9 = 0$, $c_{10} = 0.253$, $c_{11} = 0.173$, $c_{12} = -0.135$, $c_{13} = -0.138$, $c_{14} = -0.256$, $c_{15} = 0.630$ and $\sigma = c_{16} - 0.07M_w$ for $M_w < 7.4$ and $\sigma = c_{16} - 0.518$ for $M_w \geq 7.4$ where $c_{17} = 0.975$ or $\sigma = c_{17} + 0.351$ for PGA $\leq 0.07$ g, $\sigma = c_{17} - 0.132 \ln(\text{PGA})$ for $0.07 < \text{PGA} < 0.25$ g and $\sigma = c_{17} + 0.183$ for PGA $\geq 0.25$ g where $c_{17} = 0.274$.

- Use four site categories:

  **Firm soil** Generally includes soil deposits of Holocene age (less than 11,000 years old) described on geological maps as recent alluvium, alluvial fans, or undifferentiated Quaternary deposits. Approximately corresponds to $V_{s,30} = 298 \pm 92$ m/s$^{-1}$ and NEHRP soil class D. Uncorrected PGA: 534 horizontal records and 525 vertical records and corrected PGA: 241 horizontal records and 240 vertical records. $S_{VFS} = 0$, $S_{SR} = 0$ and $S_{FR} = 0$.

  **Very firm soil** Generally includes soil deposits of Pleistocene age (11,000 to 1.5 million years old) described on geological maps as older alluvium or terrace deposits. Approximately corresponds to $V_{s,30} = 368 \pm 80$ m/s$^{-1}$ and NEHRP soil class CD. Uncorrected PGA: 168 horizontal records and 166 vertical records and corrected PGA: 84 horizontal records and 83 vertical records. $S_{VFS} = 1$, $S_{SR} = 0$ and $S_{FR} = 0$.

  **Soft rock** Generally includes sedimentary rock and soft volcanic deposits of Tertiary age (1.5 to 100 million years old) as well as ‘softer’ units of the Franciscan Complex and other low-grade metamorphic rocks generally described as melange, serpentine and schist. Approximately corresponds to $V_{s,30} = 421 \pm 109$ m/s$^{-1}$ and NEHRP soil class CD. Uncorrected PGA: 126 horizontal records and 124 vertical records and corrected PGA: 63 horizontal records and 62 vertical records. $S_{SR} = 1$, $S_{VFS} = 0$ and $S_{FR} = 0$.

  **Firm rock** Generally include older sedimentary rocks and hard volcanic deposits, high-grade metamorphic rock, crystalline rock and the ‘harder’ units of the Franciscan Complex generally
described as sandstone, greywacke, shale, chert and greenstone. Approximately corresponds to $V_{s,30} = 830 \pm 339 \text{ms}^{-1}$ and NEHRP soil class BC. Uncorrected PGA: 132 horizontal records and 126 vertical records and corrected PGA: 55 horizontal records and 54 vertical records. $S_{FR} = 1$, $S_{VFS} = 0$ and $S_{SR} = 0$.

Note that for generic soil (approximately corresponding to $V_{s,30} = 310 \text{ms}^{-1}$ and NEHRP site class D) use $S_{VFS} = 0.25$, $S_{SR} = 0$, $S_{FR} = 0$ and for generic rock (approximately corresponding to $V_{s,30} = 620 \text{ms}^{-1}$ and NEHRP site class C) use $S_{SR} = 0.50$, $S_{FR} = 0.50$ and $S_{VFS} = 0$.

- Use four fault types but only model differences between strike-slip, reverse and thrust:

  Normal Earthquakes with rake angles between 202.5° and 337.5°. 4 records from 1 earthquake.

  Strike-slip Includes earthquakes on vertical or near-vertical faults with rake angles within 22.5° of the strike of the fault. Also include 4 records from 1975 Oroville normal faulting earthquake.

  Uncorrected PGA: 404 horizontal records and 395 vertical records and corrected PGA: 127 horizontal and vertical records. $F_{RV} = 0$ and $F_{TH} = 0$.

  Reverse Steeply dipping earthquakes with rake angles between 22.5° and 157.5°. Uncorrected PGA: 186 horizontal records and 183 vertical records and corrected PGA: 58 horizontal records and 57 vertical records. $F_{RV} = 1$ and $F_{TH} = 0$.

  Thrust Shallow dipping earthquakes with rake angles between 22.5° and 157.5°. Includes some blind thrust earthquakes. Uncorrected PGA: 370 horizontal records and 363 vertical records and corrected PGA: 258 horizontal records and 255 vertical records. $F_{TH} = 1$ and $F_{RV} = 0$.

Note that for generic (unknown) fault type use $F_{RV} = 0.25$ and $F_{TH} = 0.25$.

- Most records from $5.5 \leq M_w \leq 7.0$.

- Note that equations are an update to equations in Campbell (1997) because they used a somewhat awkward and complicated set of ground motion models because there used a mixture of functional forms. Consider that the new equations supersede their previous studies.

- Uncorrected PGA refers to the standard level of accelerogram processing known as Phase 1. Uncorrected PGAs are either scaled directly from the recorded accelerogram or if the accelerogram was processed, from the baseline and instrument-corrected Phase 1 acceleration time-history.

- Corrected PGA measured from the Phase 1 acceleration time-history after it had been band-pass filtered and decimated to a uniform time interval.

- Restrict data to within 60 km of seismogenic rupture zone ($r_{seis} \leq 60 \text{km}$) of shallow crustal earthquakes in active tectonic regions which have source and near-source attenuation similar to California. Most data from California with some from Alaska, Armenia, Canada, Hawaii, India, Iran, Japan, Mexico, Nicaragua, Turkey and Uzbekistan. Note some controversy whether this is true for all earthquakes (e.g. Gazli and Nahanni). Exclude subduction-interface earthquakes.
• Restrict earthquakes to those with focal depths < 25 km.

• Exclude data from subduction-interface earthquakes, since such events occur in an entirely different tectonic environment that the other shallow crustal earthquakes, and it has not been clearly shown that their near-source ground motions are similar to those from shallow crustal earthquakes.

• Restrict to $r_{\text{seis}} \leq 60 \text{ km}$ to avoid complications related to the arrival of multiple reflections from the lower crust. Think that this distance range includes most ground-motion amplitudes of engineering interest.

• All records from free-field, which define as instrument shelters or non-embedded buildings < 3 storeys high and < 7 storeys high if located on firm rock. Include records from dam abutments to enhance the rock records even though there could be some interaction between dam and recording site. Exclude records from toe or base of dam because of soil-structure interaction.

• Do preliminary analysis, find coefficients in $f_3$ need to be constrained in order to make $Y$ independent on $M_w$ at $r_{\text{seis}} = 0$, otherwise $Y$ exhibits 'oversaturation’ and decreases with magnitude at close distances. Therefore set $c_8 = -c_2/c_4$ and $c_9 = -c_3/c_4$.

• Functional form permits nonlinear soil behaviour.

• Do not include sediment depth (depth to basement rock) as a parameter even though analysis of residuals indicated that it is an important parameter especially at long periods. Do not think its exclusion is a serious practical limitation because sediment depth is generally not used in engineering analyses and not included in any other widely used attenuation relation.

• Do not apply weights during regression analysis because of the relatively uniform distribution of records w.r.t. magnitude and distance.

• To make regression analysis of corrected PGA more stable set $c_2$ equal to value from better-constrained regression of uncorrected PGAs.

• Examine normalised residuals $\delta_i = (\ln Y_i - \ln \bar{Y})/\sigma_{\ln(\text{Unc. PGA})}$ where $\ln Y_i$ is the measured acceleration, $\bar{Y}$ is the predicted acceleration and $\sigma_{\ln(\text{Unc. PGA})}$ is the standard deviation of the uncorrected PGA equation. Plot $\delta_i$ against magnitude and distance and find models are unbiased.

• Consider equations valid for $M_w \geq 5.0$ and $r_{\text{seis}} \leq 60 \text{ km}$. Probably can be extrapolated to a distance of 100 km without serious compromise.

• Note that should use equations for uncorrected PGA if only an estimate of PGA is required because of its statistical robustness. If want response spectra and PGA then should use corrected PGA equation because the estimates are then consistent.

• Note that should include ground motions from Kocaeli (17/8/1999, $M_w = 7.4$), Chi-Chi (21/9/1999, $M_w = 7.6$), Hector Mine (16/10/1999, $M_w = 7.1$) and Duzce (12/11/1999, $M_w = 7.2$).
$M_w = 7.1$) earthquakes but because short-period motions from these earthquakes was significantly lower than expected their inclusion could lead to unconservative estimated ground motions for high magnitudes.

- Prefer the relationship for $\sigma$ in terms of PGA because statistically more robust. Note that very few records to constrain value of $\sigma$ for large earthquakes but many records to constrain $\sigma$ for $\text{PGA} \geq 0.25 \text{g}$.

- Find that Monte Carlo simulation indicates that all regression coefficients statistically significant at 10% level.


- Ground motion model is:

$$
\log_{10}(\text{PGA}) = b_0 + b_1 M - \log_{10}(R) + b_2 R \\
R = \sqrt{D^2 + h^2}
$$

where PGA is in $g$, $b_0 = -1.2780 \pm 0.1909$, $b_1 = 0.2853 \pm 0.0316$, $b_2 = -1.730 \times 10^{-3} \pm 2.132 \times 10^{-4}$ and $\sigma = 0.3368$ ($\pm$ indicates the standard deviation of the coefficients). $h$ was fixed arbitrarily to 8 km.

- Use data from ISESD (Ambraseys et al., 2003). Select using $d_e < 1000 \text{ km}$, $5 \leq M \leq 7$ (where $M$ is either $M_w$ or $M_s$).

- Focal depths $< 20 \text{ km}$.

- Only use data from strike-slip earthquakes.

- Note that coefficient of variation for $b$ coefficients is in range 11 to 15%.

- Note that $b_0$ and $b_1$ are very strongly negatively correlated (correlation coefficient of $-0.9938$), believed to be because PGA is governed by $b_0 + b_1 M$ as $D$ approaches zero, but they are almost uncorrelated with $b_2$ (correlation coefficients of $-0.0679$ and $-0.0076$ for $b_0$ and $b_1$ respectively), believed to be because of zero correlation between $M$ and $D$ in the data used.

- Also derive equation using $\log_{10}(\text{PGA}) = b_0 + b_1 M + b_2 R + b_3 \log_{10}(R)$ (do not report coefficients) and find slightly smaller residuals but similar behaviour of the $b$ parameters.

- Plot distribution of residuals (binned into intervals of 0.25 units) and the normal probability density function.
4. GENERAL CHARACTERISTICS OF ATTENUATION RELATIONS FOR PEAK GROUND ACCELERATION

Table 4.1 gives the general characteristics of published attenuation relations for peak ground acceleration. The columns are:

- **H**: Number of horizontal records (if both horizontal components are used then multiply by two to get total number)
- **V**: Number of vertical components
- **E**: Number of earthquakes
- **$M_{\text{min}}$**: Magnitude of smallest earthquake
- **$M_{\text{max}}$**: Magnitude of largest earthquake
- **$M$ scale**: Magnitude scale (scales in brackets refer to those scales which the main $M$ values were sometimes converted from, or used without conversion, when no data existed), where:
  - $m_b$: Body-wave magnitude
  - $M_C$: Chinese surface wave magnitude
  - $M_{CL}$: Coda length magnitude
  - $M_D$: Duration magnitude
  - $M_{\text{JMA}}$: Japanese Meteorological Agency magnitude
  - $M_L$: Local magnitude
  - $M_{bLg}$: Magnitude calculated using Lg amplitudes on short-period, vertical seismographs
  - $M_s$: Surface-wave magnitude
  - $M_w$: Moment magnitude
- **$d_{\text{min}}$**: Shortest source-to-site distance
- **$d_{\text{max}}$**: Longest source-to-site distance
- **$d$ scale**: Distance measure, where:
  - $d_c$: Distance to rupture centroid
  - $d_e$: Epicentral distance
  - $d_E$: Distance to energy centre
4. General characteristics of attenuation relations for peak ground acceleration

$d_f$ Distance to projection of rupture plane on surface (Joyner & Boore, 1981)

$d_h$ Hypocentral (or focal) distance

$d_q$ Equivalent hypocentral distance (EHD) (Ohno et al., 1993)

$d_r$ Distance to rupture plane

$d_s$ Distance to seismogenic rupture plane (assumes near-surface rupture in sediments is non-seismogenic) (Campbell, 1997)

S Number of different site conditions modelled, where:

C Continuous classification

I Individual classification for each site

C Use of the two horizontal components of each accelerogram, where:

B Both components

C Randomly chosen component

G Geometric mean

L Larger component

M Mean (not stated what type)

O Randomly oriented component

R Resolved component

U Unknown

V Vectorially resolved component, i.e. square root of sum of squares of the two components

R Regression method used, where:

1 Ordinary one-stage

1B Bayesian one-stage (Ordaz et al., 1994)

1M Maximum likelihood one-stage (Joyner & Boore, 1993)

1W Weighted one-stage

2 Two-stage (Joyner & Boore, 1981)

2M Maximum likelihood two-stage (Joyner & Boore, 1993)

2W Two-stage with second staged weighted as described in Joyner & Boore (1988)

O Other (see section referring to study)

U Unknown (often probably ordinary one-stage regression)

M Source mechanisms (and tectonic type) of earthquakes (letters in brackets refer to those mechanism which are separately modelled), where:

A All (this is assumed if no information is given in the reference)

B Interslab
4. General characteristics of attenuation relations for peak ground acceleration

F  Interface
I  Intraplate
N  Normal
O  Oblique
R  Reverse
S  Strike-slip
T  Thrust

‘+’ refers to extra records from outside region used to supplement data. (...) refer either to magnitudes of supplementing records or to those used for part of analysis. * means information is approximate because either read from graph or found in another way.
Tab. 4.1: Characteristics of published peak ground acceleration relations

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esteva &amp; Rosenblueth</td>
<td>W. USA</td>
<td>46*</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>15*</td>
<td>450*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Kanai (1966)</td>
<td>California &amp; Japan</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>15*</td>
<td>500*</td>
<td>$d_h$</td>
<td>C</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Mlne &amp; Davenport</td>
<td>W. USA</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>15*</td>
<td>450*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Esteva (1970)</td>
<td>W. USA</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>8</td>
<td>8</td>
<td>U</td>
<td>3*</td>
<td>450*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Denham &amp; Small (1971)</td>
<td>Yonki, New Guinea</td>
<td>8</td>
<td>-</td>
<td>8</td>
<td>U</td>
<td>$M_L$</td>
<td>5</td>
<td>3</td>
<td>450*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Donovan (1973)</td>
<td>Mostly W. USA but 100+ foreign</td>
<td>678</td>
<td>-</td>
<td>&lt;5</td>
<td>&gt;8</td>
<td>U</td>
<td>3*</td>
<td>450*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Denham et al. (1973)</td>
<td>Papua Guinea</td>
<td>25</td>
<td>-</td>
<td>25</td>
<td>5.2</td>
<td>8.0</td>
<td>$M_L$</td>
<td>80*</td>
<td>300</td>
<td>U</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Esteva &amp; Villaverde</td>
<td>W. USA</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>15*</td>
<td>150*</td>
<td>$d_h$</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Orphal &amp; Lahoud</td>
<td>California</td>
<td>140</td>
<td>-</td>
<td>31</td>
<td>4.1</td>
<td>7.0</td>
<td>$M_L$</td>
<td>15</td>
<td>350</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys (1975b),</td>
<td>Europe</td>
<td>58</td>
<td>-</td>
<td>U</td>
<td>3.5</td>
<td>5.0</td>
<td>$M_L$</td>
<td>5</td>
<td>35</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys (1975a) &amp;</td>
<td></td>
</tr>
<tr>
<td>Ambraseys (1978a)</td>
<td></td>
</tr>
<tr>
<td>Trifunac &amp; Brady (1975), Trifunac &amp; Brady (1976)</td>
<td>W. USA</td>
<td>181</td>
<td>181</td>
<td>57</td>
<td>3.8</td>
<td>7.7</td>
<td>Mostly $M_L$</td>
<td>6*</td>
<td>400*</td>
<td>$d_c$</td>
<td>3</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Blume (1977)</td>
<td>California &amp; W. Nevada</td>
<td>795</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>$d_h$</td>
<td>2</td>
<td>B</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>McGuire (1977)</td>
<td>W. USA</td>
<td>34</td>
<td>-</td>
<td>22</td>
<td>5.3</td>
<td>7.6</td>
<td>$M_L$</td>
<td>14</td>
<td>125</td>
<td>$d_h$</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Milne (1977)</td>
<td>W. USA</td>
<td>200</td>
<td>-</td>
<td>U</td>
<td>3.5</td>
<td>7.7</td>
<td>U</td>
<td>1</td>
<td>380</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys (1978b)</td>
<td>Europe &amp; Middle East</td>
<td>162</td>
<td>-</td>
<td>U</td>
<td>3.0*</td>
<td>6.6</td>
<td>$m_b$</td>
<td>0*</td>
<td>30*</td>
<td>$d_h$</td>
<td>1</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
</tbody>
</table>

1 State that it is Richter magnitude which assume to be $M_L$.
2 Ambraseys & Bommer (1995) state that uses 38 earthquakes.
3 Ambraseys & Bommer (1995) state that uses larger component.
4 Note only valid for $R \geq 20$ km.
5 Note only valid for $R \leq 200$ km.
6 Total earthquake components (does not need to be multiplied by two) for magnitude and distance dependence. Uses 2713 underground nuclear explosion records for site dependence.
Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>Scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>Scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Donovan &amp; Bornstein (1978)</td>
<td>W. USA</td>
<td>59</td>
<td>-</td>
<td>10</td>
<td>5.0</td>
<td>7.7</td>
<td>U</td>
<td>0.1</td>
<td>321</td>
<td>U</td>
<td>1</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Faccioli (1978)</td>
<td>Mostly W. USA &amp; Japan, some foreign</td>
<td>47$^a$</td>
<td>-</td>
<td>23</td>
<td>4.9</td>
<td>7.8</td>
<td>U$^b$</td>
<td>15</td>
<td>342</td>
<td>U</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>McGuire (1978)</td>
<td>W. USA</td>
<td>70</td>
<td>-</td>
<td>17+*</td>
<td>4.5*</td>
<td>7.7</td>
<td>U$^{11}$</td>
<td>11*</td>
<td>210*</td>
<td>U</td>
<td>2</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>A. Patwardhan et al. (1978)</td>
<td>Worldwide</td>
<td>63 (32)</td>
<td>-</td>
<td>25 (23)</td>
<td>4 (5.3)</td>
<td>7.7 (7.8)</td>
<td>$M_s$</td>
<td>U</td>
<td>U</td>
<td>d$_r$</td>
<td>2</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Cornell et al. (1979)</td>
<td>W. USA</td>
<td>70</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>d$_h$</td>
<td>1</td>
<td>C</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Aptikaev &amp; Kopnichev (1980)</td>
<td>Worldwide</td>
<td>Many 100s</td>
<td>(70$^a$)</td>
<td>U (59)</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>d$_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A (T, TS, S, SN, N)$^{12}$</td>
<td></td>
</tr>
<tr>
<td>Blume (1980)</td>
<td>W. USA</td>
<td>816</td>
<td>-</td>
<td>U</td>
<td>2.1</td>
<td>7.6</td>
<td>U</td>
<td>0</td>
<td>449</td>
<td>d$_h$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Iwasaki et al. (1980)</td>
<td>Japan</td>
<td>301</td>
<td>-</td>
<td>51</td>
<td>&gt;5.0</td>
<td>&lt;7.9</td>
<td>$M_L$</td>
<td>$^{17}$</td>
<td>&lt;20</td>
<td>$d_e$</td>
<td>4</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Ohsaki et al. (1980a)</td>
<td>Japan</td>
<td>75</td>
<td>75</td>
<td>U</td>
<td>4</td>
<td>7.4</td>
<td>U</td>
<td>6</td>
<td>500</td>
<td>d$_h$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Campbell (1981)</td>
<td>W. USA+8 foreign</td>
<td>116</td>
<td>-</td>
<td>27</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_L$ for $M &lt; 6.0$ and $M_s$</td>
<td>0.08</td>
<td>47.7</td>
<td>$d_r$</td>
<td>1</td>
<td>M</td>
<td>O</td>
<td>A</td>
</tr>
</tbody>
</table>

7 Idriss (1978) finds magnitudes to be mixture of $M_L$ and $M_s$.  
8 Total earthquake components (does not need to be multiplied by two)  
9 Idriss (1978) believes majority are $M_s$.  
10 Idriss (1978) finds magnitudes to be mixture of $M_L$, $m_b$, and $M_s$.  
11 Reported in Idriss (1978).  
12 Assume dip-slip means normal mechanism.  
13 State that it is Richter magnitude which assume to be $M_L$.  

continued on next page
### Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brillinger &amp; Preisler</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w (M_L)$</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>2</td>
<td>L</td>
<td>1M</td>
<td>A</td>
</tr>
<tr>
<td>Joyner &amp; Fumal (1984), Joyner &amp; Fumal (1985) &amp; Joyner &amp; Boore (1988)</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w (M_L)$</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>C</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Kawashima et al. (1984) &amp; Kawashima et al. (1986)</td>
<td>Japan</td>
<td>197</td>
<td>-</td>
<td>90</td>
<td>5.0</td>
<td>7.9</td>
<td>$M_{\text{JMA}}$</td>
<td>5*</td>
<td>550*</td>
<td>$d_e$</td>
<td>3</td>
<td>R</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>McCann Jr. &amp; Echevria (1984)</td>
<td>N. America + foreign</td>
<td>83</td>
<td>-</td>
<td>18</td>
<td>5.0*</td>
<td>U</td>
<td>$M_w$</td>
<td>U</td>
<td>U</td>
<td>$d_r$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Schenk (1984)</td>
<td>Unknown</td>
<td>3500</td>
<td>-</td>
<td>U</td>
<td>2.5</td>
<td>6.5</td>
<td>U</td>
<td>2</td>
<td>600</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Xu et al. (1984)</td>
<td>N. China</td>
<td>19</td>
<td>-</td>
<td>10</td>
<td>4.5</td>
<td>7.8</td>
<td>$M_w (M_L)$</td>
<td>10.1</td>
<td>157</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Brillinger &amp; Preisler</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w (M_L)$</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>2</td>
<td>L</td>
<td>1M</td>
<td>A</td>
</tr>
<tr>
<td>Kawashima et al. (1985)</td>
<td>Japan</td>
<td>-</td>
<td>119</td>
<td>90*</td>
<td>5.0*</td>
<td>7.5*</td>
<td>$M_{\text{JMA}}$</td>
<td>5*</td>
<td>500*</td>
<td>$d_e$</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Peng et al. (1985b)</td>
<td>N.E. China</td>
<td>73</td>
<td>-</td>
<td>20</td>
<td>3.7</td>
<td>7.8</td>
<td>$M_c$</td>
<td>2</td>
<td>442.5</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Peng et al. (1985a)</td>
<td>Tangshan region, China</td>
<td>93</td>
<td>87</td>
<td>19</td>
<td>2.9</td>
<td>5.3</td>
<td>$M_L$</td>
<td>2*</td>
<td>50*</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>PML (1985)</td>
<td>USA + Europe + others</td>
<td>203</td>
<td>-</td>
<td>46</td>
<td>3.1</td>
<td>6.9</td>
<td>$M_s$</td>
<td>0.1</td>
<td>40</td>
<td>$d_r$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A (S, T)</td>
</tr>
<tr>
<td>McCue (1986)</td>
<td>E. Australia</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>1.7</td>
<td>5.4</td>
<td>$M_L$</td>
<td>2.5</td>
<td>134</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>C.B. Crouse (1987)$^{14}$</td>
<td>S. California</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_e$</td>
<td>U</td>
<td>U</td>
<td>$d_c$</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

$^{14}$ Reported in Joyner & Boore (1988).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{min}$</th>
<th>$M_{max}$</th>
<th>$M_{scale}$</th>
<th>$d_{min}$</th>
<th>$d_{max}$</th>
<th>d scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sabetta &amp; Pugliese (1987)</td>
<td>Italy</td>
<td>95</td>
<td>-</td>
<td>17</td>
<td>4.6</td>
<td>6.8</td>
<td>$M_s$ for $M \geq 5.5$, $M_L$ otherwise</td>
<td>1.5</td>
<td>179</td>
<td>Both $d_f$ &amp; $d_s$</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>K. Sadigh (1987)[16]</td>
<td>W. USA + others</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>2</td>
<td>B</td>
<td>U</td>
<td>A (S, R)</td>
</tr>
<tr>
<td>Singh et al. (1987)</td>
<td>Mexico</td>
<td>16</td>
<td>-</td>
<td>16</td>
<td>5.6</td>
<td>8.1</td>
<td>$M_s$</td>
<td>282</td>
<td>466</td>
<td>$d_e$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Algermissen et al. (1988)</td>
<td>Vicinity of San Salvador</td>
<td>82</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td>1</td>
<td>M</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Annaka &amp; Nozawa (1988)</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>45</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>K.W. Campbell (1988)[17]</td>
<td>Worldwide</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>$\geq 5$</td>
<td>U</td>
<td>$M_L$ for $M &lt; 6.0$ and $M_s$ otherwise</td>
<td>U</td>
<td>$&lt; 50$</td>
<td>$d_s$</td>
<td>2</td>
<td>M</td>
<td>U</td>
<td>A (S, R)</td>
</tr>
<tr>
<td>Fukushima et al. (1988) &amp; Fukushima &amp; Tanaka (1990)</td>
<td>Japan+200 W. USA</td>
<td>486+200</td>
<td>-</td>
<td>28+15</td>
<td>4.6(5.0)</td>
<td>8.2(7.7)</td>
<td>$M_L$ (M_JMA)</td>
<td>16 (0.1)</td>
<td>303 (48)</td>
<td>$d_h$, $d_e$ for 2 Japanese &amp; all US</td>
<td>4</td>
<td>G</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Gaull (1988)</td>
<td>S. W. W. Australia</td>
<td>25+</td>
<td>-</td>
<td>12+</td>
<td>2.6</td>
<td>6.9</td>
<td>$M_L$</td>
<td>2.5</td>
<td>175</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Joyner &amp; Boore (1988)</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_L$ (M_JMA)</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>2</td>
<td>L</td>
<td>2W</td>
<td>A</td>
</tr>
<tr>
<td>McCue et al. (1988)</td>
<td>S.E. Australia</td>
<td>62</td>
<td>-</td>
<td>U</td>
<td>0.5*</td>
<td>6*</td>
<td>$M_L$</td>
<td>5*</td>
<td>833</td>
<td>$d_s$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Petrovski &amp; Marcellini (1988)</td>
<td>Europe</td>
<td>120</td>
<td>120</td>
<td>46</td>
<td>3</td>
<td>7</td>
<td>U</td>
<td>8</td>
<td>200</td>
<td>$d_h$</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>

continued on next page

15 Also derive equations for Japan subduction zones.
16 195 for subduction zone equations.
17 >7.5 for subduction zone equations.
18 Call magnitude scale Richter magnitude, which note is equivalent to $M_w$ for $M \leq 8.3$, $M_L$ for $M < 5.9$ and $M_s$ for $5.9 \leq M \leq 8.0$.
19 About 15km for subduction zone equations.
20 About 400km for subduction zone equations.
21 $d_e$ for subduction zone equations.
### Table 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>$H$</th>
<th>$V$</th>
<th>$E$</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>$S$</th>
<th>$C$</th>
<th>$R$</th>
<th>$M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tong &amp; Katayama (1988)</td>
<td>Kanto (Japan)</td>
<td>&lt;227</td>
<td>-</td>
<td>&lt;27</td>
<td>4.5*</td>
<td>7.9*</td>
<td>U</td>
<td>10*</td>
<td>750*</td>
<td>d_e</td>
<td>C</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Yamabe &amp; Kanai (1988)</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>22</td>
<td>5.3</td>
<td>7.9</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Youngs et al. (1988)</td>
<td>Worldwide subduction zones</td>
<td>197+389</td>
<td>-</td>
<td>60</td>
<td>5</td>
<td>8.1</td>
<td>(8.2)</td>
<td>$M_w$</td>
<td>$M_s$</td>
<td>$m_b$</td>
<td>$d_e$</td>
<td>$d_h$ for $M_w \geq 6.0$, $M_L (m_b)$ otherwise</td>
<td>1</td>
<td>G</td>
</tr>
<tr>
<td>Abrahamson &amp; Litehiser (1989)</td>
<td>75%+ California, rest foreign</td>
<td>585</td>
<td>585</td>
<td>76</td>
<td>5.0</td>
<td>8.1</td>
<td>$M_s$ for $M_w \geq 6.0$, $M_L (m_b)$ otherwise</td>
<td>0.08</td>
<td>400</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Campbell (1989)</td>
<td>W. N. America + 3 from Managua</td>
<td>190</td>
<td>-</td>
<td>91</td>
<td>2.9</td>
<td>5.0</td>
<td>$M_L$</td>
<td>0.6</td>
<td>18.3</td>
<td>$d_e$</td>
<td>1</td>
<td>M</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Alfaro et al. (1990)</td>
<td>Guatemala, Nicaragua &amp; El Salvador</td>
<td>20</td>
<td>-</td>
<td>12</td>
<td>4.1</td>
<td>7.5</td>
<td>$M_s$</td>
<td>1</td>
<td>27</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys (1990)</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.03</td>
<td>7.7</td>
<td>$M_w (M_L)$</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>2</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Campbell (1990)</td>
<td>Unknown</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$ for $M &lt; 6$, $M_s$ for $M \geq 6$</td>
<td>U</td>
<td>U</td>
<td>$d_s$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Dahle et al. (1990b) &amp; Dahle et al. (1990a)</td>
<td>Worldwide intraplate regions</td>
<td>87</td>
<td>-</td>
<td>56</td>
<td>2.9</td>
<td>7.8</td>
<td>$M_s (M_L, m_b, M_{CL})$</td>
<td>6</td>
<td>1300</td>
<td>$d_h$</td>
<td>1</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Jacob et al. (1990)</td>
<td>E. N. America</td>
<td>U</td>
<td>-</td>
<td>8</td>
<td>1.8</td>
<td>6.4</td>
<td>$m_b$</td>
<td>≤</td>
<td>820</td>
<td>$U^{25}$</td>
<td>1</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Sen (1990)</td>
<td>Whittier Narrows area</td>
<td>72*</td>
<td>-</td>
<td>11</td>
<td>2.2</td>
<td>3.5</td>
<td>$M_L$</td>
<td>12*</td>
<td>21*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>M</td>
<td>A (T)</td>
</tr>
<tr>
<td>Sigbjörnsson (1990)</td>
<td>Iceland</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>5.8*</td>
<td>U</td>
<td>U</td>
<td>$d_f$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Tsai et al. (1990)</td>
<td>Worldwide</td>
<td>&lt;217</td>
<td>-</td>
<td>&lt;51</td>
<td>4.9*</td>
<td>7.4</td>
<td>$M_w$</td>
<td>3*</td>
<td>150*</td>
<td>$d_e$</td>
<td>1</td>
<td>M</td>
<td>U</td>
<td>T (S,O)</td>
</tr>
<tr>
<td>Ambraseys &amp; Bommer (1991) &amp; Ambraseys &amp; Bommer (1992)</td>
<td>Europe &amp; Mid. East</td>
<td>529</td>
<td>459</td>
<td>H:219, V:191</td>
<td>4</td>
<td>7.34</td>
<td>$M_s$</td>
<td>1</td>
<td>H:313, $d_f$ for $M_s \geq 6.0$, $d_e$ otherwise</td>
<td>1</td>
<td>L</td>
<td>1, 2</td>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

---

24 Consider equations valid for $M_w \leq 8$

25 Free (1996) believes it is $d_h$.

26 This is $M_s$. 

continued on next page
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>$H$</th>
<th>$V$</th>
<th>$E$</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$K_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>$S$</th>
<th>$C$</th>
<th>$R$</th>
<th>$M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crouse (1991)</td>
<td>Worldwide subduction zones</td>
<td>697</td>
<td>-</td>
<td>U</td>
<td>4.8</td>
<td>8.2</td>
<td>$M_{\text{w}}$ ($M_s, M_{\text{JMA}}$)</td>
<td>&gt;8</td>
<td>&gt;866</td>
<td>$d_E, d_h$ for $M &lt; 7.5$</td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Garcia-Fernández &amp; Canas (1991) &amp; Garcia-Fernández &amp; Canas (1995)</td>
<td>Iberia</td>
<td>57</td>
<td>367</td>
<td>U</td>
<td>3.1</td>
<td>5.0</td>
<td>$m_{b,L,g}$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Huo &amp; Hu (1991)</td>
<td>W. USA with foreign</td>
<td>383+25</td>
<td>-</td>
<td>14+2</td>
<td>5.0</td>
<td>7.4 (7.3)</td>
<td>$M_L$ or $m_b$ for $M &lt; 6.0$ and $M_s$ otherwise</td>
<td>0.1</td>
<td>227</td>
<td>$d_f$ (265)</td>
<td>2</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>I.M. Idriss (1991) reported in Idriss (1993)</td>
<td>Unknown</td>
<td>572</td>
<td>-</td>
<td>30*</td>
<td>4.6</td>
<td>7.4</td>
<td>$M_L$ for $M &lt; 6$, $M_s$ for $M \geq 6$</td>
<td>1</td>
<td>100</td>
<td>$d_e$, $d_h$ for $M &lt; 6$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Niazi &amp; Bozorgnia (1991)</td>
<td>SMART-1 array, Taiwan</td>
<td>236</td>
<td>234</td>
<td>12</td>
<td>3.6</td>
<td>7.8</td>
<td>$M_L$ ($M_D$) for $M_L &lt; 6.6$, else $M_s$</td>
<td>3.1*</td>
<td>119.7*</td>
<td>$d_h$</td>
<td>1</td>
<td>M</td>
<td>2W</td>
<td>A</td>
</tr>
<tr>
<td>Rogers et al. (1991)</td>
<td>Worldwide</td>
<td>1241</td>
<td>-</td>
<td>180*</td>
<td>5.3*</td>
<td>8.1*</td>
<td>$M_L$ for $M \leq 6$, $M_s$ for $6 &lt; M &lt; 8$ and $M_w$ for $M \geq 8$</td>
<td>4*</td>
<td>400*</td>
<td>$d_e$ if have, $d_h$ otherwise</td>
<td>6</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Abrahamson &amp; Youngs (1992)</td>
<td>Unknown</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>1</td>
<td>U</td>
<td>1M</td>
<td>A (U, U)</td>
<td></td>
</tr>
<tr>
<td>Ambraseys et al. (1992)</td>
<td>USA + Europe + others</td>
<td>504</td>
<td>-</td>
<td>45</td>
<td>3.1</td>
<td>6.87</td>
<td>$M_s$</td>
<td>0.5</td>
<td>39</td>
<td>$d_f$, $d_e$ for some</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Kamiyama et al. (1992) &amp; Kamiyama (1995)</td>
<td>Japan</td>
<td>357</td>
<td>-</td>
<td>82</td>
<td>4.1</td>
<td>7.9</td>
<td>$M_{\text{JMA}}$</td>
<td>3.4</td>
<td>413.3</td>
<td>$d_h$</td>
<td>I</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
</tbody>
</table>

---

27. Total number of components, does not need to be multiplied by two.
28. Also present equations for SSE (using 140 records) and NE Iberia (using 107 records).
29. Distance to centre of array
| Reference                  | Area                                      | H  | V  | E  | \(M_{\text{min}}\) | \(M_{\text{max}}\) | Scale | \(d_{\text{min}}\) | \(d_{\text{max}}\) | Scale | S  | C  | R  | M  |
|----------------------------|-------------------------------------------|-----|----|----|---------------------|---------------------|-------|---------------------|---------------------|-------|----|----|----|
| Sigbjørnsson & Baldvinsson (1992) | Iceland                                  | 262 | -  | 39 | 2.0                 | 6.0                 | U     | 2                   | 80                  | \(d_f\) | 2  | B, L | 2  | A  |
| Taylor Castillo et al. (1992) | Nicaragua, Salvador & Costa Rica         | 89  | -  | 27 | 3.0                 | 7.6                 | \(M_s\) | 6                   | 210                 | \(d_h\) | 1  | L   | U  | A  |
| Tento et al. (1992)          | Italy                                     | 137 | -  | 40 | 4.0                 | 6.6                 | \(M_L\) | 3.2                 | 170                 | \(d_f\) for \(M_L \geq 5.7\), \(d_h\) otherwise | 1  | L   | 2  | A  |
| Theodulidis & Papazachos (1992) | Greece+16 foreign                        | 105+16 | - | 36+4 | 4.5 (7.2)          | 7.0 (7.5)          | \(M_s\), \(M_w\), \(M_{JMA}\) | 1 (48)       | 128 (236) | \(d_e\) | 2  | B   | O  | A  |
| Boore et al. (1993) & Boore et al. (1997) | W. N. America                          | 271 | -  | 20 | 5.1 \(\dagger\) | 7.7                  | \(M_w\) | 0                   | 118.2               | \(d_f\) | 3  | L   | 2M | A  |
| Campbell (1993)              | Worldwide                                 | U   | -  | U | U          \(\dagger\) | U                   | \(M_L\) for \(M < 6.0\) and \(M_s\) otherwise | U \(\dagger\) | \(d_e\) | 2  | M   | O  | A (T,S) |    |
| McVerry et al. (1993) & McVerry et al. (1995) | New Zealand                             | 256 | -  | 31* | 5.1                 | 7.3                 | \(M_w\) | 13                  | 312                 | \(d_e\) or \(d_h\) | 1  | L   | 1  | A, R |
| Sadigh et al. (1993) & Sadigh et al. (1997) | California with 4 foreign               | 960+4 | U | 119+2 | 3.8 (6.8)          | 7.4 (7.4)          | \(M_w\) | 0.1 \(\dagger\) | 305 (172) for some, \(d_h\) for small ones | 2  | G   | U  | A(R,S) |
| Singh et al. (1993)          | Nicaragua, Salvador & Costa Rica         | 89  | -  | 27 | 3.0                 | 7.6                 | \(M_s\) | 6                   | 210                 | \(d_h\) | 1  | V   | O  | A  |
| Sun & Peng (1993)            | W. USA with 1 foreign                    | 150+1 | - | 42+1 | 4.1                 | 7.7                 | \(M_L\) for \(M < 6, \hspace{1em}M_s\) \(\dagger\) | 2*\(\dagger\) | 150* | \(d_e\) | C  | R   | 1  | A  |

---

30 Total number of components does not need to be multiplied by two
31 Boore et al. (1997) revise this magnitude to 5.87. New minimum magnitude is 5.2.
32 Considers equation valid for \(M \geq 4.7\).
33 Considers equation valid for \(d \leq 300\) km.
34 Equations stated to be for distances up to 100 km
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>$H$</th>
<th>$V$</th>
<th>$E$</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>$S$</th>
<th>$C$</th>
<th>$R$</th>
<th>$M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambraseys &amp; Srbulov (1994)</td>
<td>Worldwide</td>
<td>947</td>
<td>-</td>
<td>76</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_s$</td>
<td>1</td>
<td>375</td>
<td>$d_f$</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>2W</td>
</tr>
<tr>
<td>Boore et al. (1994a) &amp; Boore et al. (1997)</td>
<td>W. N. America</td>
<td>271 (70)</td>
<td>-</td>
<td>20 (9)</td>
<td>5.1</td>
<td>7.7 (7.4)</td>
<td>$M_{\text{sw}}$</td>
<td>0</td>
<td>118.2</td>
<td>$d_f$ (109)</td>
<td>C</td>
<td>L</td>
<td>1M</td>
<td>A (R,S)</td>
</tr>
<tr>
<td>Fukushima et al. (1994) &amp; Fukushima et al. (1995)</td>
<td>3 vertical arrays in Japan</td>
<td>285</td>
<td>284</td>
<td>42</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_{\text{MA}}$</td>
<td>60*</td>
<td>400*</td>
<td>$d_h$</td>
<td>1</td>
<td>B</td>
<td>1.2</td>
<td>A</td>
</tr>
<tr>
<td>Lawson &amp; Krawinkler (1994)</td>
<td>W. USA</td>
<td>250+</td>
<td>-</td>
<td>11</td>
<td>5.8</td>
<td>7.4</td>
<td>$M_{\text{w}}$</td>
<td>U</td>
<td>100</td>
<td>$d_f$</td>
<td>3</td>
<td>U</td>
<td>1M</td>
<td>A</td>
</tr>
<tr>
<td>Lungu et al. (1994)</td>
<td>Romania</td>
<td>$\approx$ 300</td>
<td>125</td>
<td>4</td>
<td>6.3</td>
<td>7.4</td>
<td>$M_{\text{JMA}}$</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Musson et al. (1994)</td>
<td>UK + 30* foreign</td>
<td>15 + 30*</td>
<td>-</td>
<td>4+16</td>
<td>3 (3.7)</td>
<td>3.5 (6.4)</td>
<td>$M_{\text{L}}$</td>
<td>70*</td>
<td>&gt;477.4$d_h$ (1.3) (200*)</td>
<td>1</td>
<td>U 1*</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Radu et al. (1994), Lungu et al. (1995a) &amp; Lungu et al. (1996)</td>
<td>Romania</td>
<td>106</td>
<td>-</td>
<td>3</td>
<td>6.7($M_{\text{L}}$)</td>
<td>or 7.2($M_{\text{L}}$)</td>
<td>$U^{38}$</td>
<td>90*</td>
<td>320*</td>
<td>$d_h$</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Ramazi &amp; Schenk (1994)</td>
<td>Iran</td>
<td>83</td>
<td>83</td>
<td>20</td>
<td>5.1</td>
<td>7.7</td>
<td>$M_{s}^{39}$</td>
<td>$\leq 8$</td>
<td>$\geq 180$</td>
<td>$d_h$ for most, $d_e$ for $M_{\text{sw}} &gt; 6.0$, $d_e$ otherwise</td>
<td>2</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Xiang &amp; Gao (1994)</td>
<td>Yunnan, China + 114 W. N. America</td>
<td>131+114</td>
<td>-</td>
<td>U</td>
<td>2.5*</td>
<td>7.6*</td>
<td>$M_s$ ($M_{\text{L}}$)</td>
<td>2*</td>
<td>120*</td>
<td>$d_e$</td>
<td>1</td>
<td>L</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys (1995)</td>
<td>Europe and Mid. East</td>
<td>830</td>
<td>620</td>
<td>334</td>
<td>4.0</td>
<td>7.3</td>
<td>$M_s$</td>
<td>0*</td>
<td>260*</td>
<td>$d_f$ for $M_{\text{sw}} &gt; 6.0$, $d_e$ otherwise</td>
<td>1</td>
<td>L</td>
<td>2W</td>
<td>A</td>
</tr>
<tr>
<td>Dahle et al. (1995)</td>
<td>Cen. America</td>
<td>280</td>
<td>-</td>
<td>72</td>
<td>3*</td>
<td>8*</td>
<td>$M_{\text{sw}}$ ($M_b$, $M_{\text{D}}$)</td>
<td>6*</td>
<td>490*</td>
<td>$d_h$</td>
<td>2</td>
<td>L</td>
<td>1B</td>
<td>A</td>
</tr>
</tbody>
</table>

continued on next page

32. Boore et al. (1997) revise this magnitude to 5.87. New minimum magnitude is 5.2.
33. Coefficients given in Boore et al. (1994b)
34. Free (1996) believes it is largest horizontal component.
35. It is not clear whether use Richter magnitude ($M_{\text{L}}$) or $M_{\text{sw}}$.
36. Some may be $m_b$ because in their Table 1 some earthquakes to not have $M_{\text{sw}}$ given but do have $m_b$. If so new minimum is 5.0.
37. They state it is ‘closest distance from the exposure of ruptured part of the fault, instead of focal distances’ so may not be rupture distance.
4. General characteristics of attenuation relations for peak ground acceleration

Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee et al. (1995)</td>
<td>W. N. America</td>
<td>1926</td>
<td>1926</td>
<td>297</td>
<td>1.7</td>
<td>7.7</td>
<td>Usually</td>
<td>2</td>
<td>200+</td>
<td>$d_h$</td>
<td>9</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$M_L$ for $M \leq 6.5$ and $M_s$ for $M &gt; 6.5$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lungu et al. (1995b)</td>
<td>Romania</td>
<td>106</td>
<td>-</td>
<td>3</td>
<td>6.7($M_L$) or 7.2($M_L$) or 7.0($M_w$)</td>
<td>U$^{11}$</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td></td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Molas &amp; Yamazaki (1995)</td>
<td>Japan</td>
<td>2166</td>
<td>-</td>
<td>387</td>
<td>4.1*</td>
<td>7.8*</td>
<td>$M_{15MA}$</td>
<td>8*</td>
<td>1000*</td>
<td>$d_r$ for 2 earthquakes, $d_h$ otherwise</td>
<td>I</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Sama &amp; Free (1995)</td>
<td>E. N. America$^{12}$</td>
<td>77</td>
<td>-</td>
<td>33</td>
<td>2.8</td>
<td>5.9</td>
<td>$M_w$ ($m_b$, $M_L$, $M_s$)</td>
<td>0</td>
<td>820</td>
<td>$d_f$ or $d_e$</td>
<td>2</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys et al. (1996) &amp;</td>
<td>Europe &amp; Mid.</td>
<td>422</td>
<td>-</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$ (unspecified)</td>
<td>0</td>
<td>260</td>
<td>$d_f$ for $M_s &gt; 6.0$, $d_e$ otherwise</td>
<td>3</td>
<td>L</td>
<td>2W$^{11}$</td>
<td>A</td>
</tr>
<tr>
<td>Simpson (1996)</td>
<td></td>
</tr>
<tr>
<td>Ambraseys &amp; Simpson (1996) &amp;E. Mid.</td>
<td>-</td>
<td>417</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$ (unspecified)</td>
<td>0</td>
<td>260</td>
<td>$d_f$ for $M &gt; 6.0$, $d_e$ otherwise</td>
<td>3</td>
<td>-</td>
<td>2W$^{11}$</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Aydan et al. (1996)</td>
<td>Turkey</td>
<td>27*</td>
<td>23*</td>
<td>19*</td>
<td>3.5*</td>
<td>7.6*</td>
<td>$M_s$</td>
<td>10*</td>
<td>350*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Bommer et al. (1996)</td>
<td>El. Salvador &amp;</td>
<td>36</td>
<td>-</td>
<td>20</td>
<td>3.7</td>
<td>7.0</td>
<td>$M_s$</td>
<td>62</td>
<td>260</td>
<td>$d_h$</td>
<td>1</td>
<td>L</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Nicaragua</td>
<td></td>
</tr>
<tr>
<td>Free et al. (1998)</td>
<td>Stable continental regions</td>
<td>558</td>
<td>478</td>
<td>H: 222</td>
<td>1.5</td>
<td>6.8</td>
<td>$M_w$</td>
<td>0</td>
<td>820</td>
<td>$d_f$ for some, $d_e$ for most</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>

$^{11}$ It is not clear whether use Richter magnitude ($M_L$) or $M_w$.

$^{12}$ Also derive equations for Australia and N. E. China.


<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{min}$</th>
<th>$M_{max}$</th>
<th>$M$ scale</th>
<th>$d_{min}$</th>
<th>$d_{max}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohno et al. (1996)</td>
<td>California</td>
<td>248</td>
<td>-</td>
<td>17</td>
<td>5.0</td>
<td>7.5</td>
<td>$M_w$ ($M_L$)</td>
<td>7.2</td>
<td>99.6</td>
<td>$d_o$ for $M &gt; 5.3$, $d_h$ otherwise</td>
<td>2</td>
<td>B</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Romeo et al. (1996)</td>
<td>Italy</td>
<td>95</td>
<td>-</td>
<td>17</td>
<td>4.6*</td>
<td>6.8*</td>
<td>$M_w$</td>
<td>1.5</td>
<td>1.5</td>
<td>$d_f$ &amp; $d_c$</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Samma &amp; Srbulov (1996)</td>
<td>Worldwide</td>
<td>350</td>
<td>-</td>
<td>114</td>
<td>3.9</td>
<td>7.7</td>
<td>$M_s$</td>
<td>1</td>
<td>213</td>
<td>$d_f$ &amp; $d_c$</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Singh et al. (1996)</td>
<td>Himalayas</td>
<td>86</td>
<td>-</td>
<td>5</td>
<td>5.7</td>
<td>7.2</td>
<td>$m_b$</td>
<td>33.15</td>
<td>340.97</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Spudich et al. (1996) &amp; Spudich et al. (1997)</td>
<td>Worldwide extensional regimes</td>
<td>128</td>
<td>-</td>
<td>30</td>
<td>5.10</td>
<td>6.90</td>
<td>$M_w$</td>
<td>0</td>
<td>102.1</td>
<td>$d_f$</td>
<td>2</td>
<td>G</td>
<td>2M NS</td>
<td>A</td>
</tr>
<tr>
<td>Stamatovska &amp; Petrovski (1996)</td>
<td>Romania, Bulgaria &amp; former Yugoslavia</td>
<td>190</td>
<td>-</td>
<td>4</td>
<td>6.1</td>
<td>7.2</td>
<td>$M_L$*</td>
<td>10*</td>
<td>310*</td>
<td>$d_o$</td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Munson &amp; Thurber (1997)</td>
<td>Hawaii</td>
<td>51</td>
<td>-</td>
<td>22</td>
<td>4.0</td>
<td>7.2</td>
<td>$M_w$ (for $M_s \geq 6.1$)</td>
<td>0</td>
<td>88</td>
<td>$d_f$</td>
<td>2</td>
<td>L</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Rhoades (1997)</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w$ ($M_L$)</td>
<td>0.5</td>
<td>370</td>
<td>$d_f$</td>
<td>1</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Schmidt et al. (1997)</td>
<td>Costa Rica</td>
<td>200</td>
<td>-</td>
<td>57</td>
<td>3.3</td>
<td>7.6</td>
<td>$M_w$ ($M_s$, $m_b$, $M_D$)</td>
<td>6.1</td>
<td>182.1</td>
<td>$d_h$</td>
<td>3</td>
<td>L</td>
<td>B</td>
<td>A</td>
</tr>
<tr>
<td>Youngs et al. (1997)</td>
<td>Worldwide subduction zones</td>
<td>476</td>
<td>-</td>
<td>164</td>
<td>5.0</td>
<td>8.2</td>
<td>$M_w$ ($M_s$, $m_b$)</td>
<td>8.5</td>
<td>550.9</td>
<td>$d_c$, $d_h$ for some</td>
<td>2</td>
<td>G</td>
<td>1M NT</td>
<td>A</td>
</tr>
<tr>
<td>Zhao et al. (1997)</td>
<td>NZ with 66 foreign</td>
<td>461</td>
<td>+66</td>
<td>49+17</td>
<td>5.08</td>
<td>7.23(7.41)</td>
<td>$M_w$ (0.1)</td>
<td>11</td>
<td>573</td>
<td>$d_c$ for some, $d_c$ for most</td>
<td>2</td>
<td>U</td>
<td>1</td>
<td>A(R)</td>
</tr>
</tbody>
</table>

45 Total number of components. Does not need to be multiplied by two.
46 Called Richter magnitude.
47 Includes some not used for regression.
4. General characteristics of attenuation relations for peak ground acceleration

Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_s$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bouhadad et al. (1998)</td>
<td>Algeria</td>
<td>U</td>
<td>-</td>
<td>2</td>
<td>5.6</td>
<td>6.1</td>
<td>$M_s$</td>
<td>20</td>
<td>70</td>
<td>$d_{h}$</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Costa et al. (1998)</td>
<td>Friuli</td>
<td>80*</td>
<td>80*</td>
<td>20*</td>
<td>1.3*</td>
<td>4.3*</td>
<td>$M_{D}$</td>
<td>6*</td>
<td>66*</td>
<td>$d_{h}$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Manic (1998)</td>
<td>N.W. Balkans</td>
<td>276*</td>
<td>-</td>
<td>56</td>
<td>4</td>
<td>7</td>
<td>$M_s$</td>
<td>U</td>
<td>$d_{h}$</td>
<td>2 B 1 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinaldis et al. (1998)</td>
<td>Italy &amp; Greece</td>
<td>137*</td>
<td>-</td>
<td>24*</td>
<td>4.5</td>
<td>7</td>
<td>$M_s$ or $M_w$</td>
<td>7</td>
<td>138</td>
<td>$d_{c}$</td>
<td>2</td>
<td>U</td>
<td>O</td>
<td>A (N,ST)</td>
</tr>
<tr>
<td>Sadigh &amp; Egan (1998)</td>
<td>California with 4 foreign</td>
<td>960+4</td>
<td>-</td>
<td>119+2</td>
<td>3.8</td>
<td>7.4</td>
<td>$M_w$</td>
<td>0.1</td>
<td>305$^{77}$ for some, $d_{c}$ for small ones</td>
<td>2</td>
<td>G</td>
<td>U</td>
<td>A(R,SN)</td>
<td></td>
</tr>
<tr>
<td>Sarna &amp; Srbulov (1998)</td>
<td>Worldwide</td>
<td>690$^{77}$</td>
<td>-</td>
<td>113</td>
<td>3.9</td>
<td>7.7</td>
<td>$M_s$ (U)</td>
<td>0</td>
<td>197</td>
<td>$d_{f}, d_{c}$</td>
<td>2</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Sharma (1998)</td>
<td>Indian Himalayas</td>
<td>66</td>
<td>-</td>
<td>5</td>
<td>5.5</td>
<td>6.6</td>
<td>U</td>
<td>8</td>
<td>248</td>
<td>$d_{h}$</td>
<td>1</td>
<td>L</td>
<td>1W</td>
<td>A</td>
</tr>
<tr>
<td>Smit (1998)</td>
<td>Switzerland + some from S.</td>
<td></td>
<td></td>
<td></td>
<td>2.0</td>
<td>5.1</td>
<td>$M_L$</td>
<td>1</td>
<td>290</td>
<td>$d_{h}$</td>
<td>1</td>
<td>U</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Cabañas et al. (1999),</td>
<td>Mediterranean region$^{53}$</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>2.5</td>
<td>7.0</td>
<td>$M_s$</td>
<td>0</td>
<td>250</td>
<td>$d_{c}$</td>
<td>4</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Cabañas et al. (2000) &amp;</td>
<td></td>
</tr>
<tr>
<td>Benito et al. (2000)</td>
<td></td>
</tr>
<tr>
<td>Chapman (1999)</td>
<td>W. N. America</td>
<td>304</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w$</td>
<td>0.1</td>
<td>189.4</td>
<td>$d_{f}$</td>
<td>3</td>
<td>G</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Cousins et al. (1999)</td>
<td>NZ with 66 foreign</td>
<td>610+66</td>
<td>-</td>
<td>25+17</td>
<td>5.17</td>
<td>7.09(7.41)</td>
<td>$M_w$</td>
<td>0.1</td>
<td>400</td>
<td>$d_{c}$ for some, $d_{c}$ for most</td>
<td>3</td>
<td>U</td>
<td>U</td>
<td>A(R)</td>
</tr>
<tr>
<td>Ólafsson &amp; Sighjörnsson</td>
<td>Iceland</td>
<td>88$^{54}$</td>
<td>-</td>
<td>17</td>
<td>3.4</td>
<td>5.9</td>
<td>$M_w$</td>
<td>2</td>
<td>112</td>
<td>$d_{c}$</td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Spudich et al. (1999)</td>
<td>Worldwide extensional</td>
<td>142</td>
<td>-</td>
<td>39</td>
<td>5.1</td>
<td>7.2</td>
<td>$M_w$</td>
<td>0</td>
<td>99.4</td>
<td>$d_{f}$</td>
<td>2</td>
<td>G</td>
<td>1M</td>
<td>NS</td>
</tr>
<tr>
<td>Wang et al. (1999)</td>
<td>Tangshan, N. China</td>
<td>44</td>
<td>-</td>
<td>6</td>
<td>3.7</td>
<td>4.9</td>
<td>$M_c$</td>
<td>(ML)</td>
<td>2.1</td>
<td>41.3</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
</tbody>
</table>

$^{48}$ Total number of components do not need to be multiplied by two.
$^{49}$ Equations stated to be for distances up to 100 km.
$^{50}$ Total number of components do not need to be multiplied by two.
$^{51}$ Also derive equations for Spain.
$^{52}$ Also derive equations using $M_{D}$.
$^{53}$ Also derive equations using $d_{h}$.
$^{54}$ Total number of components. Does not need to be multiplied by two.
$^{55}$ Equation given in terms of $\log M_0$. 

4. General characteristics of attenuation relations for peak ground acceleration

continued on next page
Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaré et al. (1999)</td>
<td>Iran</td>
<td>468</td>
<td>468</td>
<td>47*</td>
<td>2.7</td>
<td>7.4</td>
<td>$M_{\text{w}}$ ($M_{\text{s}}, m_{\text{b}}, M_{\text{L}}$)</td>
<td>4</td>
<td>224</td>
<td>$d_{f}$</td>
<td>4</td>
<td>B</td>
<td>2M</td>
<td>R, RS &amp; S</td>
</tr>
<tr>
<td>Bozorgnia et al. (2000)</td>
<td>Worldwide</td>
<td>2823</td>
<td>2823</td>
<td>48</td>
<td>4.7</td>
<td>7.7</td>
<td>$M_{\text{w}}$ 1* $60^* d_{s}$</td>
<td>4</td>
<td>G</td>
<td>1</td>
<td>A</td>
<td>(S,R,T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Campbell &amp; Bozorgnia (2000)</td>
<td>Worldwide</td>
<td>960*</td>
<td>941*'</td>
<td>49*</td>
<td>4.7</td>
<td>7.7</td>
<td>$M_{\text{w}}$ 1* $60^* d_{s}$</td>
<td>4</td>
<td>1</td>
<td>U</td>
<td>2</td>
<td>T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jain et al. (2000)</td>
<td>Central Himalayas</td>
<td>32 (117)</td>
<td>-</td>
<td>3</td>
<td>5.5</td>
<td>7.0</td>
<td>$U$ (4)</td>
<td>152</td>
<td>$d_{e}$</td>
<td>1</td>
<td>U</td>
<td>1</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>Kobayashi et al. (2000)</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>5.0</td>
<td>7.8</td>
<td>$M_{\text{w}}$ 0.9* $400^* d_{h}$</td>
<td>4</td>
<td>B</td>
<td>1</td>
<td>M</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monguilner et al. (2000a)</td>
<td>Worldwide</td>
<td>549*</td>
<td>-</td>
<td>10*</td>
<td>4.39</td>
<td>7.4</td>
<td>$M_{\text{a}}$ $M_{\text{L}} &gt; 6$, $M_{\text{L}}$ otherwise</td>
<td>11*</td>
<td>350$^*$</td>
<td>$d_{h}$</td>
<td>2</td>
<td>U</td>
<td>1W</td>
<td>A</td>
</tr>
<tr>
<td>Sharma (2000)</td>
<td>Indian Himalayas</td>
<td>-</td>
<td>66</td>
<td>5</td>
<td>5.5</td>
<td>6.6</td>
<td>$U$</td>
<td>8</td>
<td>248</td>
<td>$d_{h}$</td>
<td>1</td>
<td>-</td>
<td>1W</td>
<td>A</td>
</tr>
<tr>
<td>Shi &amp; Midorikawa (2000)</td>
<td>Japan</td>
<td>856</td>
<td>-</td>
<td>21</td>
<td>5.8</td>
<td>8.3</td>
<td>$M_{\text{w}}$ 0* $280^* d_{h}$ for both $d_{h}$ &amp; $d_{e}$</td>
<td>2</td>
<td>L</td>
<td>O</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smit et al. (2000)</td>
<td>Caucasus</td>
<td>84</td>
<td>-</td>
<td>26</td>
<td>4.0</td>
<td>7.1</td>
<td>$M_{\text{e}}$ 4</td>
<td>230</td>
<td>$d_{e}$, $d_{h}$</td>
<td>4</td>
<td>L</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Takahashi et al. (2000)</td>
<td>Japan+166 foreign</td>
<td>1332</td>
<td>-</td>
<td>U+7*</td>
<td>8.3 (5.8*)</td>
<td>8.3 (8*)</td>
<td>$M_{\text{w}}$ 1* $300^* d_{h}$ for some $d_{h}$</td>
<td>4</td>
<td>G</td>
<td>O</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wang &amp; Tao (2000)</td>
<td>W. N. America</td>
<td>182</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_{\text{w}}$ ($M_{\text{L}}$) 0.5</td>
<td>370</td>
<td>$d_{f}$</td>
<td>2</td>
<td>L</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Chang et al. (2001)</td>
<td>Taiwan</td>
<td>4720*</td>
<td>-</td>
<td>45*</td>
<td>4.1*</td>
<td>7.0*</td>
<td>$M_{\text{w}}$ ($M_{\text{L}}$ for $M_{\text{L}} &lt; 60^*$ $M_{\text{L}}$ for $M_{\text{L}} &lt; 60$)</td>
<td>264.4$^{*}$ $d_{h}$</td>
<td>1</td>
<td>G</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lussou et al. (2001)</td>
<td>Japan</td>
<td>3011</td>
<td>3011</td>
<td>102</td>
<td>3.7</td>
<td>6.3</td>
<td>$M_{\text{MA}}$ 4* $600^* d_{h}$</td>
<td>4</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

56 Equation for corrected PGA uses 443 records.
57 Equation for corrected PGA uses 439 records.
58 Equation for corrected PGA uses data from 36 earthquakes.
59 Assuming they use same data as Monguilner et al. (2000b).
60 Shallow crustal records.
61 Subduction records.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen &amp; Tsai (2002)</td>
<td>Taiwan</td>
<td>424</td>
<td>48</td>
<td>U</td>
<td>68</td>
<td>7.4</td>
<td>$M_L$</td>
<td>0.1</td>
<td>$d_e$</td>
<td>2</td>
<td>U</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Gregor et al. (2002)</td>
<td>Shallow crustal worldwide (mainly California)</td>
<td>993</td>
<td>993</td>
<td>68</td>
<td>4.4</td>
<td>7.4</td>
<td>$M_w$</td>
<td>0.1</td>
<td>$d_e$</td>
<td>2</td>
<td>U</td>
<td>1</td>
<td>M</td>
<td>A</td>
</tr>
<tr>
<td>Gülan &amp; Kalkan (2002)</td>
<td>Turkey</td>
<td>93</td>
<td>-</td>
<td>19</td>
<td>4.5</td>
<td>7.4</td>
<td>$M_w$</td>
<td>1.20</td>
<td>$d_f$, $d_e$</td>
<td>3</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Khademi (2002)</td>
<td>Iran</td>
<td>160</td>
<td>160</td>
<td>28</td>
<td>3.4</td>
<td>7.4</td>
<td>$M_w$</td>
<td>0.1*</td>
<td>$d_f$, $d_e$   for $M &lt; 5$</td>
<td>2</td>
<td>L</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Margaris et al. (2002)</td>
<td>Greece</td>
<td>744</td>
<td>-</td>
<td>142</td>
<td>4.5</td>
<td>7.0</td>
<td>$M_w$</td>
<td>1</td>
<td>$d_e$</td>
<td>3</td>
<td>B</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Schwarz et al. (2002)</td>
<td>N.W. Turkey</td>
<td>683</td>
<td>683</td>
<td>U</td>
<td>0.9</td>
<td>7.2</td>
<td>$M_L$</td>
<td>0*</td>
<td>$d_e$</td>
<td>3</td>
<td>U</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Stamatovska (2002)</td>
<td>Romania</td>
<td>190</td>
<td>-</td>
<td>4</td>
<td>6.1</td>
<td>7.2</td>
<td>$M_s$</td>
<td>10*</td>
<td>$d_e$</td>
<td>1</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Tromans &amp; Bommer (2002)</td>
<td>Europe</td>
<td>249</td>
<td>-</td>
<td>51</td>
<td>5.5</td>
<td>7.9</td>
<td>$M_s$</td>
<td>1</td>
<td>$d_f$</td>
<td>3</td>
<td>L</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Alarcón (2003)</td>
<td>Colombia</td>
<td>47</td>
<td>-</td>
<td>U</td>
<td>4.0</td>
<td>6.7</td>
<td>$M_s$</td>
<td>49.7</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Alchalbi et al. (2003)</td>
<td>Syria</td>
<td>49</td>
<td>49</td>
<td>10</td>
<td>3.5</td>
<td>5.8</td>
<td>$M_{CL}$</td>
<td>21</td>
<td>$d_h$</td>
<td>2</td>
<td>U</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Atkinson &amp; Boore (2003)</td>
<td>Subduction zones</td>
<td>1200+</td>
<td>-</td>
<td>43</td>
<td>5.5</td>
<td>8.3</td>
<td>$M_w$</td>
<td>11*</td>
<td>$d_e$</td>
<td>4</td>
<td>C</td>
<td>1</td>
<td>M</td>
<td>F, B</td>
</tr>
<tr>
<td>Boatwright et al. (2003)</td>
<td>N. California</td>
<td>4028</td>
<td>-</td>
<td>104</td>
<td>3.3</td>
<td>7.1</td>
<td>$M_w$</td>
<td>1</td>
<td>$d_h$</td>
<td>4</td>
<td>U</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Bommer et al. (2003)</td>
<td>Europe &amp; Mid. East</td>
<td>422</td>
<td>-</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$</td>
<td>(unspecified)</td>
<td>$d_h$</td>
<td>3</td>
<td>L</td>
<td>1</td>
<td>M</td>
<td>A</td>
</tr>
</tbody>
</table>

---

*continued on next page*
### Tab. 4.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>S</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell &amp; Bozorgnia (2003c), Campbell &amp; Bozorgnia (2003a) &amp; Bozorgnia &amp; Campbell (2004b)</td>
<td>Worldwide</td>
<td>443$^{65}$</td>
<td>439$^{66}$</td>
<td>36$^{67}$</td>
<td>4.7</td>
<td>7.7</td>
<td>$M_w$</td>
<td>2$^*$</td>
<td>60$^*$</td>
<td>$d_s$</td>
<td>4</td>
<td>G</td>
<td>1</td>
<td>A (S &amp; N, R, T)</td>
</tr>
<tr>
<td>Sigbjornsson &amp; Ambraseys (2003)</td>
<td>Europe &amp; Middle East</td>
<td>465</td>
<td>-</td>
<td>U</td>
<td>$5^*$</td>
<td>$7^*$</td>
<td>$M_w$ or $M_s$</td>
<td>1$^*$</td>
<td>500$^*$</td>
<td>$d_f$ if available, $d_c$ otherwise</td>
<td>1</td>
<td>L</td>
<td>1</td>
<td>S</td>
</tr>
</tbody>
</table>

65 There are 960 components for uncorrected PGA.
66 There are 941 components for uncorrected PGA.
67 For horizontal corrected records. There are 49 for horizontal uncorrected PGA. There are 34 for vertical corrected records and 46 for vertical uncorrected PGA.
5. SUMMARY OF PUBLISHED ATTENUATION RELATIONS FOR SPECTRAL ORDINATES

5.1 Johnson (1973)

- Ground motion model is:

  \[ \text{PSRV} = C10^{0.606 R^m} \]

- Response parameter is pseudo-velocity for 5% damping.

- Most (76%) records from \( R < 70 \text{ km} \).

- Uses only shallow focus earthquakes of 'normal' or less depth, to minimize variables, except for one record from deeper earthquake (\( m_b = 6.5, R = 61.1 \text{ km} \)) which produces no distortion in statistical calculations.

5.2 Kobayashi & Nagahashi (1977)

- Ground motion model is:

  \[ \log_{10} S V_0 = a(\omega) M - b(\omega) \log_{10} x - c(\omega) \]

- Response parameter is velocity for unspecified damping.

- Do regression iteratively. Assume \( a(\omega), b(\omega) \) and \( c(\omega) \). Find amplification factors, \( G_i(\omega) \), for each response spectra, \( R_i(\omega) \): \( G_i = R_i(\omega)/S V_0 \). Calculate amplification factor, \( G \), for each site: \( G = \sqrt[\omega]{\prod_{i=1}^n G_i(\omega)} \). Estimate bedrock spectrum, \( B_i(\omega) \), for each record: \( B_i(\omega) = R_i(\omega)/G(\omega) \). Find \( a(\omega), b(\omega) \) and \( c(\omega) \) by least squares. Repeat these steps until convergence. Hence find attenuation relation for bedrock and amplification function for each site.

5.3 McGuire (1977)

- See Section 3.13.

- Response parameter is pseudo-velocity for 0, 2, 5 and 10% damping.

- Residuals pass Kolmogorov-Smirnov goodness-of-fit test at 5% significance level for normal distribution, so it is concluded that pseudo-velocities are lognormally distributed.

\(^1\) It is probably 5%.
5. Summary of published attenuation relations for spectral ordinates

- Feels that using 16 natural periods presents a very good picture of spectral trends throughout entire period range.
- Only gives graphs of coefficients not actual calculated values.

5.4 Trifunac (1977) & Trifunac & Anderson (1978a)

- Ground motion model is:
  \[
  \log_{10}[SA(T), p] = M + \log_{10} A_0(R) - a(T)p - b(T)M - c(T)d(T)s - e(T)v - f(T)M^2 - g(T)R
  \]
  where \( \log A_0(R) \) is an empirically determined attenuation function from Richter (1958) used for calculation of \( M_L \), \( p \) is confidence level and \( v \) is component direction (\( v = 0 \) for horizontal and 1 for vertical). \( \log A_0(R) \) not given here due to lack of space.

- Uses three site categories:
  - \( s = 0 \) Alluvium. 63% of data.
  - \( s = 1 \) Intermediate. 23% of data.
  - \( s = 2 \) Basement rock. 8% of data.

- Response parameter is acceleration for 0, 2, 5, 10 and 20% damping.

- Note that do not believe the chosen independent parameters are the best physical characterization of strong shaking but they are based on instrumental and qualitative information available to the engineering community in different parts of the USA and the world.

- Data from free-field stations and basements of tall buildings, which assume are not seriously affected by the surroundings of the recording station. Note that detailed investigations will show that data from basements of tall buildings or adjacent to some other large structure are affected by the structures but do not consider these effects.

- Equation constrained to interval \( M_{\text{min}} \leq M \leq M_{\text{max}} \) where \( M_{\text{min}} = -b(T)/2f(T) \) and \( M_{\text{max}} = [1 - b(T)]/2f(T) \). For \( M > M_{\text{max}} \) replace \( f(T)M^2 \) by \( f(T)(M - M_{\text{max}})^2 \) and for \( M < M_{\text{min}} \) replace \( M \) by \( M_{\text{min}} \) everywhere to right of \( \log_{10} A_0(R) \).

- Use almost same data as Trifunac (1976). See Section 3.11.

- Use same regression method as Trifunac (1976). See Section 3.11.

- Note that need to examine extent to which computed spectra are affected by digitization and processing noise. Note that routine band-pass filtering with cut-offs of 0.07 and 25 Hz or between 0.125 and 25 Hz may not be adequate because digitisation noise does not have constant spectral amplitudes in respective frequency bands and because noise amplitudes depend on total length of record.
Find approximate noise spectra based on 13 digitisations of a diagonal line processed using the same technique used to process the accelerograms used for the regression. Linearly interpolate noise spectra for durations of 15, 30, 60 and 100 s to obtain noise spectra for duration of record and then subtract noise spectrum from record spectrum. Note that since \( \text{SA}(y_1 + y_2) \neq \text{SA}(y_1) + \text{SA}(y_2) \) this subtraction is an approximate method to eliminate noise which, empirically, decreases the distortion by noise of the SA spectra when the signal-to-noise ratio is small.

Note that \( p \) is not a probability but for values of \( p \) between 0.1 and 0.9 it approximates probability that \( \text{SA}(T),p \) will not be exceeded given other parameters of the regression.

\(-g(T)R\) term represents a correction to average attenuation which is represented by \( \log_{10} A_0(R) \).

Do not use data filtered at 0.125 Hz in regression for \( T > 8 \) s.

Due to low signal-to-noise ratio for records from many intermediate and small earthquakes only did regression up to 12 s rather than 15 s.

Smooth coefficients using an Ormsby low-pass filter along the \( \log_{10} T \) axis.

Only give coefficients for 11 selected periods. Give graphs of coefficients for other periods.

Note that due to the small size of \( g(T) \) a good approximation would be \( \log A_0(R) + R/1000 \).

Note that due to digitisation noise, and because subtraction of noise spectra did not eliminate all noise, \( b(T) \), \( c(T) \) and \( f(T) \) still reflect considerable noise content for \( T > 1 \) − 2 s for \( M \approx 4.5 \) and \( T > 6 \) − 8 s for \( M \approx 7.5 \). Hence predicted spectra not accurate for periods greater than these.

Note that could apply an optimum band-pass filter for each of the accelerograms used so that only selected frequency bands remain with a predetermined signal-to-noise ratio. Do not do this because many data points would have been eliminated from analysis which already has only a marginal number of representative accelerograms. Also note that such correction procedures would require separate extensive and costly analysis.

Note that low signal-to-noise ratio is less of a problem at short periods.

Compare predicted spectra with observed spectra and find relatively poor agreement. Note that cannot expect using only magnitude to characterise source will yield satisfactory estimates in all cases, especially for complex earthquake mechanisms. Additional parameters, such as a better distance metric than epicentral distance and inclusion of radiation pattern and direction and velocity of propagating dislocation, could reduce scatter. Note, however, that such parameters could be difficult to predict \textit{a priori} and hence may be desirable to use equations no more detailed than those proposed so that empirical models do not imply smaller uncertainties than those associated with the input parameters.

Plot fraction of data points, \( p_a \) which are smaller than spectral amplitude predicted for \( p \) values between 0.1 and 0.9. Find relationship between \( p_a \) and \( p \). Note that response spectral
amplitudes should be nearly Rayleigh distributed, hence $p_a(T) = \{1 - \exp[-\exp(\alpha(T)p + \beta(T))]\}^{N(T)}$. Find $\alpha$, $\beta$ and $N$ by regression and smoothed by eye. $N(T)$ should correspond to the number of peaks of the response of a single-degree-of-freedom system with period $T$ but best-fit values are smaller than the value of $N(T)$ derived from independent considerations.

5.5 Faccioli (1978)

- See Section 3.17.
- Response parameter is pseudo-velocity for 5% damping.
- Plots all spectra. 2 records have abnormally high values in long period range, so remove and repeat. Results practically unaffected so leave them in.
- Notes that due to small size of sample, site and source correlation can introduce some error in coefficients because all data treated as statistically independent. Assume correlations are small so neglect error.

5.6 McGuire (1978)

- See Section 3.18.
- Response parameter is pseudo-velocity for 2% damping.

5.7 Trifunac (1978) & Trifunac & Anderson (1978b)

- Ground motion model is (from definition of local magnitude scale):
  \[
  \log[\text{PSV}(T),p] = M + \log A_0(R) - a(T)p - b(T)M - c(T) - d(T)s - e(T)v - f(T)M^2 - g(T)R
  \]
  where $\log A_0(R)$ is an empirically determined attenuation function from Richter (1958) used for calculation of $M_L$, $p$ is confidence level and $v$ is component direction ($v = 0$ for horizontal and 1 for vertical). $\log A_0(R)$ not given here due to lack of space.
- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Uses three site categories:
  - $s = 0$ Alluvium. 63% of data.
  - $s = 1$ Intermediate. 23% of data. Notes that ideally would not need but had to be introduced because in some cases difficult to make a choice in complex geological environment or because of insufficient data.
  - $s = 2$ Basement rock. 8% of data.
- Use same data as Trifunac & Anderson (1978a). See Section 5.4.
5. Summary of published attenuation relations for spectral ordinates

- Use same regression method as Trifunac & Anderson (1978a). See Section 5.4.

- Equation constrained to interval $M_{\text{min}} \leq M \leq M_{\text{max}}$ where $M_{\text{min}} = -b(T)/2f(T)$ and $M_{\text{max}} = [1 - b(T)]/2f(T)$. For $M > M_{\text{max}}$ replace $M$ by $M_{\text{max}}$ everywhere and for $M < M_{\text{min}}$ replace $M$ by $M_{\text{min}}$ in $b(T)M$ and $f(T)M^2$. This gives linear growth for $M < M_{\text{min}}$, parabolic growth for $M_{\text{min}} \leq M \leq M_{\text{max}}$ and constant amplitude for $M > M_{\text{max}}$.

- 98 records from San Fernando earthquake (9/2/1971) but regression method eliminated 70% of these before computing the coefficients.

- Epicentral distance used for simplicity, consistency with earlier studies and for lack of significantly better choice. Distance measure chosen has small effect whenever epicentral distance greater than several source dimensions.

- Notes that recording and processing noise in signal means that quality of coefficients diminishes for $T > 2$ s. Equations not recommended for periods longer than those for which selected spectral amplitudes plotted.

- Notes that equations should be considered only as preliminary and an empirical approximation to a complicated physical problem.

- Notes that data are limited to narrow magnitude interval, most data comes from alluvium sites and about half comes from one earthquake.

- Only gives coefficients for 11 periods. Graphs of coefficients for other periods.

5.8 Trifunac & Anderson (1978c)

- Ground motion model is (from definition of local magnitude scale):

$$\log[PSV(T) , p] = M + \log A_0(R) - a(T)p - b(T)M - c(T)d(T)s - e(T)v - f(T)M^2 - g(T)R$$

where $\log A_0(R)$ is an empirically determined attenuation function from Richter (1958) used for calculation of $M_L$. $p$ is confidence level and $v$ is component direction ($v = 0$ for horizontal and 1 for vertical). $\log A_0(R)$ not given here due to lack of space.

- Response parameter is velocity for 0, 2, 5, 10 and 20% damping.

- Uses three site categories:

$s = 0$ Alluvium. 63% of data.

$s = 1$ Intermediate. 23% of data. Notes that ideally would not need but had to be introduced because in some cases difficult to make a choice in complex geological environment or because of insufficient data.

$s = 2$ Basement rock. 8% of data.

- Use same data as Trifunac & Anderson (1978a). See Section 5.4.
5. Summary of published attenuation relations for spectral ordinates

- Use same regression method as Trifunac & Anderson (1978a). See Section 5.4.
- Equation constrained to interval $M_{\text{min}} \leq M \leq M_{\text{max}}$ where $M_{\text{min}} = -b(T)/2f(T)$ and $M_{\text{max}} = [1-b(T)]/2f(T)$. For $M > M_{\text{max}}$ replace $M$ by $M_{\text{max}}$ everywhere and for $M < M_{\text{min}}$ replace $M$ by $M_{\text{min}}$ in $b(T)M$ and $f(T)M^2$. This gives linear growth for $M < M_{\text{min}}$, parabolic growth for $M_{\text{min}} \leq M \leq M_{\text{max}}$ and constant amplitude for $M > M_{\text{max}}$.
- Only gives coefficients for 11 periods. Graphs of coefficients for other periods.

5.9 Cornell et al. (1979)

- See Section 3.20.
- Response parameter is pseudo-velocity for 0, 2 and 10% damping.
- Consider different paths, e.g. going through intensities, Fourier spectra and PGA, to predict PSV. Note that direct paths have minimum variance but that going through intermediate steps does not significantly increase prediction uncertainty provided that intermediate parameters are representative of frequency band of structural system.
- Do not give coefficients.

5.10 Trifunac & Lee (1979)

- Ground motion model is:
  \[
  \log_{10} \text{PSV}(T) = M + \log_{10} A_0(R) - b(T)M - c(T) - d(T)h - e(T)v - f(T)M^2 - g(T)R
  \]
  where $\log A_0(R)$ is an empirically determined attenuation function from Richter (1958) used for calculation of $M_L$ and $v$ is component direction ($v = 0$ for horizontal 1 for vertical).
- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Use depth of sedimentary deposits, $h$, to characterise local geology.
- Depths of sedimentary and alluvial deposits at stations used are between 0 and about 6 km and most are less than about 4 km.
- Use data and regression technique of Trifunac & Anderson (1978a), see Section 5.4.
- Note no obvious physical reason why dependence of PSV on $h$ should be linear. Try including terms with $h^2$, $h^3$ and higher powers of $h$ but they lead to values which are undistinguishable from zero at 95% confidence level.
- Approximate significance tests show that coefficients are significantly different from zero in large subregions of the complete period range.
- Only give coefficients for 11 periods. Graphs of coefficients for other periods.
• Note results are only preliminary.
• Note amount of data too small to include more sophisticated independent parameters.

5.11 Ohsaki et al. (1980b)

• Ground motion model is:
  \[ \log S_v = a'M - b' \log x - c' \]

• Response parameter is velocity for 5% damping.
• Use two soil conditions:

  Group A Hard rock: geology consists of granite, andesite and shale of Miocene or earlier geological age, having S wave velocity \( \gtrsim 1500 \text{ms}^{-1} \) or P wave velocity \( \gtrsim 3000 \text{ms}^{-1} \), 60 records

  Group B Rather soft rock: geology consists of mudstone of Pliocene or late Miocene age, having S wave velocity of about 500–1000 ms\(^{-1} \), 35 records.

• Use records where geological and geotechnical conditions investigated in detail and considered to represent free-field rock motions. Exclude records suspected to be amplified by surface soil or affected by high topographical relief.

• Most records from \( \geq 30 \text{km} \).

• Do regression on both site categories separately and give graphs of coefficients not tables.

5.12 Ohsaki et al. (1980a)

• See Section 3.24.
• Response parameter is velocity for 5% damping.
• Also give smoothed results using correction factors based on derived PGV equation.

5.13 Trifunac (1980)

• Ground motion model is:
  \[
  \log_{10} \text{PSV}(T) = \begin{cases} 
  M - \log_{10} A_0(R) - b(T)M_{\text{min}} - c(T) - d(T)h - e(T)v \\
  - f(T)M_{\text{min}}^2 - g(T)R \\
  & \text{for } M \leq M_{\text{min}} \\
  M - \log_{10} A_0(R) - b(T)M - c(T) - d(T)h - e(T)v \\
  - f(T)M^2 - g(T)R \\
  & \text{for } M_{\text{min}} < M < M_{\text{max}} \\
  M_{\text{max}} - \log_{10} A_0(R) - b(T)M_{\text{max}} - c(T) - d(T)h - e(T)v \\
  - f(T)M_{\text{max}}^2 - g(T)R \\
  & \text{for } M \geq M_{\text{max}} 
  \end{cases}
  \]
where $\log_{10} A_0(R)$ is an empirically determined attenuation function from Richter (1958) used for calculation of $M_L$. $v$ is component direction ($v = 0$ for horizontal and 1 for vertical), $M_{\text{min}} = -b(T)/(2f(T))$ and $M_{\text{max}} = (1 - b(T))/(2f(T))$.

- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Characterises site condition by depth of sedimentary and alluvial deposits beneath station, $h$. Uses records with $0 \leq h \leq 6$ km, with most $< 4$ km.
- Performs analysis to minimize possible bias due to uneven distribution of data among magnitude, site conditions and from abundance of data for some earthquakes.
- Tries terms with higher powers of $h$ but coefficients are undistinguishable from zero at 95% confidence level.
- Assumes probability that $\log_{10} \text{PSV}(T) - \log_{10} \bar{\text{PSV}}(T) \leq \epsilon$, where $\log_{10} \text{PSV}(T)$ is measured PSV and $\bar{\text{PSV}}(T)$ is predicted PSV and $\epsilon$ is a probability, can be expressed as $p(\epsilon, T) = [1 - \exp(-\exp(\alpha(T)\epsilon(T) + \beta(T)))]^N(T)$. This assumption passes Kolmogorov-Smirnov and $\chi^2$ tests at 95% level.
- Finds $a(T)$ through $g(T)$ significantly different than zero for large subregions of whole period range. $d(T)$ is only significantly different than zero for $T \gtrsim 0.3$ s.
- Gives coefficients of smoothed results for 11 periods.
- Notes only preliminary. Improvements should be based on physical nature of phenomenon using a functional form predicted by theory and experiment but due to lack of data cannot be done.

5.14 Devillers & Mohammadioun (1981)

- Ground motion model is:
  $$V(f) = C10^{0.4M} R^n$$
- Response parameter is pseudo-velocity for 2, 5, 10 and 20% damping.
- Most records from between 20 and 40 km. No records from $R < 10$ km so equation does not apply there.
- Eliminate suspect and/or redundant (San Fernando) records.
- Split data into intensity groups: VI (126 records), VII (56 records), V+VI (186 records), VI+VII (182 records) and VII+ $\geq$ VIII (70 records) and calculates coefficients for each group.
- Note not adjusted for local site conditions. Try to distinguish effect but correlations do not reveal significant variations. Notes very few records on hard rock.
- Do not give coefficients only graphs of results.
5.15 Kobayashi & Midorikawa (1982)

- Ground motion model is:
  \[ \log S_0(T) = a(T)(\log M_0 - c) - b(T) \log X + d \]
  where \( a(T) = a_1 + a_2 \log T \)
  and: \( b(T) = \begin{cases} 
  b_1 (\log T)^2 + b_2 \log T + b_3 & \text{for: } 0.1 \leq T \leq 0.3 \text{s} \\
  b_4 - b_5 \log T & \text{for: } 0.3 \leq T \leq 5 \text{s} 
  \end{cases} \)

- Response parameter is velocity for 5% damping.
- Magnitudes converted to seismic moment, \( M_0 \), by using empirical formula.
- Observed surface spectra divided by amplification over bedrock (assumed to have shear-wave velocity of 3 kms\(^{-1}\)), calculated for each of the 9 sites.
- Note equation not for near field because earthquake is not a point source.


- See Section 3.32.
- Use data from Joyner & Boore (1982).
- Response parameter is pseudo-velocity for 5% damping.
- Shear-wave velocity not significant, at 90%, for periods 0.1, 0.15 and 0.2s but significant for longer periods.
- Regression using shear-wave velocity and depth to rock shows significant correlation (decreasing ground motion with increasing depth) for long periods but small coefficients. Short periods do not show significant correlation.
- State inappropriate to use depth to rock for present data due to limited correlation and because San Fernando data is analysed on its own does not show significant correlation.

5.17 Kawashima et al. (1984)

- See Section 3.33.
- Response parameter is acceleration for 5% damping.

5.18 Kawashima et al. (1985)

- See section 3.38.
- Response parameter is acceleration for 5% damping.
- Variation of \( a \) and \( b \) with respect to \( T \) is due to insufficient number of records.
5. Summary of published attenuation relations for spectral ordinates

5.19 Trifunac & Lee (1985)

- Ground motion models are (if define site in terms of local geological site classification):

  \[
  \log \text{PSV}(T) = M + \text{Att}(\Delta, M, T) + b_1(T)M + b_2(T)s + b_3(T)v + b_5(T) + b_6(T)M^2
  \]

  or (if define site in terms of depth of sediment):

  \[
  \log \text{PSV}(T) = M + \text{Att}(\Delta, M, T) + b_1(T)M + b_2(T)h + b_3(T)v + b_5(T) + b_6(T)M^2
  \]

  where

  \[
  \text{Att}(\Delta, M, T) = \begin{cases} 
  A_0(T) \log_{10} \Delta & \text{for } R \leq R_{\text{max}} \\
  A_0(T) \log_{10} \Delta_{\text{max}} - (R - R_{\text{max}})/200 & \text{for } R > R_{\text{max}}
  \end{cases}
  \]

  \[
  \Delta = S \left( \ln \frac{R^2 + H^2 + S^2}{R^2 + H^2 + S_0^2} \right)^{-1/2}
  \]

  \[
  \Delta_{\text{max}} = \Delta(R_{\text{max}}, H, S)
  \]

  \[
  R_{\text{max}} = \frac{1}{2} (-\beta + \sqrt{\beta^2 - 4H^2})
  \]

  \[
  S_0 = S_0(T) \text{ represents the coherence radius of the source and can be approximated by } S_0 \sim C_s T/2, C_s \text{ is shear-wave velocity in source region (taken to be } 1 \text{ kms}^{-1}, T \text{ is period, } S \text{ is ‘source dimension’ approximated by } S = 0.2 \text{ for } M < 3 \text{ and } S = -25.34 + 8.151M \text{ for } 3 \leq M \leq 7.25 \text{ and } v \text{ is component direction (} v = 0 \text{ for horizontal } 1 \text{ for vertical).}
  \]

- Use two types of site parameter:

  - Local geological site classification:
    
    \[
    s = 0 \text{ Sites on sediments.}
    \]

    \[
    s = 1 \text{ Intermediate sites.}
    \]

    \[
    s = 2 \text{ Sites on basement rock.}
    \]

  - Depth of sediments from surface to geological basement rock beneath site, \( h \).

- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.

- Equations only apply in range \( M_{\text{min}} \leq M \leq M_{\text{max}} \) where \( M_{\text{min}} = -b_1(T)/(2b_6(T)) \) and \( M_{\text{max}} = -(1 + b_1(T))/(2b_6(T)) \). For \( M < M_{\text{min}} \) use \( M \) only in first term of equation and \( M_{\text{min}} \) elsewhere and for \( M > M_{\text{max}} \) using \( M_{\text{max}} \) everywhere.

- Screen data to minimize possible bias in the model, which could result from uneven distribution of data among the different magnitude ranges and site conditions, or from excessive contribution to the database from several abundantly recorded earthquakes.

- Originally include a term linear in \( \Delta \), i.e. \( b_4(T)\Delta/100 \), but find that \( b_4(T) \) is insignificant for most periods so deleted it.

- Use method of Trifunac & Anderson (1978a) for residuals, see Section 5.4.
5. Summary of published attenuation relations for spectral ordinates

5.20 Kamiyama & Yanagisawa (1986)

- Ground motion model is:

\[ \log_{10} V(T) = a(T)M_J - b(T) \log_{10}(\Delta + 30) - d(T)D - c(T) + A_1(T)S_1 + \ldots + A_{N-1}(T)S_{N-1} \]

where \( S_i = 1 \) for \( i \)th site and 0 otherwise.

- Response parameters are acceleration, velocity and displacement for 0, 2, 5 and 10% damping.

- Model site amplification of each of the 26 sites individually by using \( S_i \). Choose one site as bed rock site, which has S-wave velocity of about 1000 m/s.

- Use records with PGA > 20 gal (0.2 ms\(^{-2}\)).

- Focal depths, \( D \), between 0 and 130 km, with most between 10 and 50 km.

- Find no significant differences between site amplification spectra for different response parameters or different damping levels.

- Compare amplification spectra from regression for different sites with those predicted using S-wave theory and find good agreement.

- Coefficients only given for velocity for 5% damping.


- See Section 3.43.

- Response parameter is pseudo-velocity for 5% damping.


- Ground motion model is:

\[ \log_{10}[PSV(T)] = \min(M, M_{\max}) + \text{Att}(\Delta, M, T) + \hat{b}_1(T)M_{\min} + \hat{b}_2(T)h + \hat{b}_3(T)v \\
+ \hat{b}_4(T)hv + \hat{b}_5(T) + \hat{b}_6(T)M_{\min}^2 + \hat{b}_7(T)S_{L}^{(1)} + \hat{b}_8(T)S_{L}^{(2)} \]

where \( M_{\min} = -\hat{b}_1/(2\hat{b}_6(T)) \)

\( M_{\max} = -(1 + \hat{b}_1(T))/(2\hat{b}_6(T)) \)

where \( v = 0 \) for horizontal component, 1 for vertical, \( h \) is depth of sedimentary deposits beneath recording station and \( \text{Att}(\Delta, M, T) \) is same as Trifunac & Lee (1989) (see Section 5.30).

- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
5. Summary of published attenuation relations for spectral ordinates

- Uses three site categories:

  \( S_L = 0 \) Rock: 1 sediment site \( (h > 0) \), 11 intermediate sites \( (h \sim 0) \) and 13 bedrock sites \( (h = 0) \) \( \Rightarrow S_L^{(1)} = 0 \) & \( S_L^{(2)} = 0 \).

  \( S_L = 1 \) Stiff soil \( (\leq 45 - 60 \text{ m deep}) \): 37 sediment sites \( (h > 0) \), 24 intermediate sites \( (h \sim 0) \) and 3 bedrock sites \( (h = 0) \) \( \Rightarrow S_L^{(1)} = 1 \) & \( S_L^{(2)} = 0 \).

  \( S_L = 2 \) Deep soil: 44 sediment sites \( (h > 0) \) and 2 intermediate sites \( (h \sim 0) \) \( \Rightarrow S_L^{(1)} = 0 \) & \( S_L^{(2)} = 1 \).

- For \( M > 6.5 \) uses different (unspecified) magnitude scales because for seismic risk analysis often catalogues do not specify scale and often estimates are not homogeneous.

- Free-field records with both soil and alluvial depth information.

- Screens data to minimize possible bias due to uneven distribution of soil classification or excessive contribution from several abundantly recorded earthquakes.

- Gives smoothed coefficients for 12 periods.


- Also uses method where site coefficients, \( \hat{b}_i^{(1)} \) & \( \hat{b}_i^{(2)} \), are found from residues from equation without site coefficients; find similar results.


- See Section 3.46.

- Response parameter is pseudo-acceleration for 5% damping.


- See Section 3.49.

- Response parameter is acceleration for 5% damping.

- Give only graphs of coefficients.

5.25 Crouse et al. (1988)

- Ground motion model is:

  \[ \ln[PSV(T)] = a + bM + c \ln[R] + dh \]

- Most data from shallow stiff soil and sedimentary deposits between about 5 and 25 m deep on Tertiary or older bedrock.
• Response parameter is pseudo-velocity for 5% damping.

• All earthquakes from Benioff-Wadati zones.

• Exclude data with magnitudes or distances well outside range of most selected records.

• Focal depths, \( h \) between 14 and 130 km.

• No strong correlations between \( h \), \( R \) and \( M \).

• Try terms \( eM^2 \) and \( fR \) but find not significant (using t-test).

• Try term \( R + C_1 \exp(C_2M) \) instead of \( R \); find similar standard errors.

• Find \( d \) is insignificant for 0.6 to 2 s; find \( d \) does not significantly reduce standard errors.

• Find residuals are normally distributed (by plotting on normal probability paper and by Kolmogorov-Smirnov test).

• Split data by fault mechanism (thrust: 49 records, normal: 11 records, strike-slip: 4 records) and find attenuation equation for each subset; results are not significantly different (at 95% using F test). Also check by examining normal deviates (normalised residuals) for each subset and period; find no significant differences.

• Use 131 records from six other subduction zones (Nankai, Kuril, Alaska, Peru/N. Chile, Mexico and New Britain/Bougainville) to examine whether ground motions from all subduction zones are similar.

• Examine normal deviates for residuals between other zones’ ground motion and N. Honshu equation. Find no significant differences (although obtain significant results for some periods and focal mechanisms) between N. Honshu, Kuril and Nankai motions. Find differences for Alaskan and Mexican data but could be due to site effects (because some data from soft soil sites). Find differences for Peru/N. Chile and New Britain/Bougainville which are probably source effects.

• Plot seismotectonic data (age, convergence rate, dip, contact width, maximum subduction depth, maximum historical earthquake \( (M_w) \), maximum rupture length, stress drop and seismic slip) against decreasing ground motion at stiff sites for \( T > 0.8 \) s. Find weak correlations for stress drop and \( M_w \) (if ignore Mexican data) but due to variability in stress drop estimates note lack of confidence in results.

5.26 Petrovski & Marcellini (1988)

• See Section 3.55.

• Response parameter is relative pseudo-velocity for 0.5%, 2%, 5% and 10% damping.
5. Summary of published attenuation relations for spectral ordinates

5.27 Yokota et al. (1988)

- Ground motion model is:

\[
\log S_v(T) = a(T)M + b(T) \log X + c(T)
\]

- Response parameter is velocity for 5% damping.
- Focal depths between about 20 and 100 km.
- Records from two stations in lowlands of Tokyo 3.7 km apart.
- Also analyse another region, using 26 records from 17 earthquakes with distances between 95 and 216 km. Note difference in results between regions.
- Analyses vertical spectra from three small regions separately, one with 24 records with \(4.0 \leq M \leq 6.1\) and \(60 \leq X \leq 100\) km, one with 22 records with \(4.2 \leq M \leq 6.0\) and \(68 \leq X \leq 99\) km and one with 5 records with \(4.4 \leq M \leq 6.0\) and \(59 \leq X \leq 82\) km.
- Give no coefficients, only results.

5.28 Youngs et al. (1988)

- See Section 3.58.
- Ground motion model is:

\[
\ln(S_v/a_{\text{max}}) = C_6 + C_7(C_8 - M_w)C_9
\]

- Response parameter, \(S_v\), is velocity\(^2\) for 5% damping
- Develop relationships for ratio \(S_v/a_{\text{max}}\) because there is a much more data for PGA than spectral ordinates and use of ratio results in relationships that are consistent over full range of magnitudes and distances.
- Calculate median spectral shapes from all records with \(7.8 \leq M_w \leq 8.1\) (choose this because abundant data) and \(R < 150\) km and one for \(R > 150\) km. Find significant difference in spectral shape for two distance ranges. Since interest is in near-field ground motion use smoothed \(R < 150\) km spectral shape. Plot ratios \([S_v/a_{\text{max}}(M_w)]/[S_v/a_{\text{max}}(M_w = 8)]\) against magnitude. Fit equation given above, fixing \(C_8 = 10\) (for complete saturation at \(M_w = 10\)) and \(C_9 = 3\) (average value obtained for periods > 1 s). Fit \(C_7\) by a linear function of \(\ln T\) and then fix \(C_6\) to yield calculated spectral amplifications for \(M_w = 8\).
- Calculate standard deviation using residuals of all response spectra and conclude standard deviation is governed by equation derived for PGA.

\(^2\) In paper conversion is made between \(S_v\) and spectral acceleration, \(S_a\), suggesting that it is pseudo-velocity.
5. Summary of published attenuation relations for spectral ordinates

5.29 Kamiyama (1989)

- Ground motion model is:

\[
\log_{10} V(\omega) = \log_{10} M_0 - a(\omega) \log_{10} r + b(\omega) \log_{10} L + c(\omega) r + \sum_{j=1}^{N-1} A_j(\omega) S_j
\]

where \( S_j = 1 \) for site \( j \) and \( S_j = 0 \) otherwise.

- Response parameter is velocity for 0% damping.

- Uses same data as Kamiyama & Yanagisawa (1986).

- Uses same regression method as Kamiyama & Yanagisawa (1986).

- Focal depths between 0 and 130 km.

- Uses fault length, \( L \), for 52 records. For others where such data does not exist uses \( M_0 = 10^{(1.5 \log_{10} S + 2.2)} \), \( S = 10^{M-4.07} \) and \( L = \sqrt{S/2} \) where \( S \) is fault area in km².

- Chooses hard slate site with shear-wave velocity of 1–2 km/s⁻¹ as ‘basic site’.

- Does not give coefficients, only graphs of coefficients.

5.30 Trifunac & Lee (1989)

- Ground motion model is:

\[
\log_{10}[\text{PSV}(T)] = M + \text{Att}(\Delta, M, T) + b_1(T) M + b_2(T) h + b_3(T) v + b_5(T)
\]

\[+ b_0(T) M^2\]

where \( \text{Att}(\Delta, M, T) = A_0(T) \log_{10} \Delta \)

\[A_0(T) = \begin{cases} 
-0.732025 & \text{for: } T > 1.8 \text{ s} \\
-0.767093 + 0.271556 \log_{10} T - 0.525641(\log_{10} T)^2 & \text{for: } T < 1.8 \text{ s}
\end{cases}\]

\[\Delta = S \left( \frac{\ln \left( R^2 + H^2 + S^2 \right)}{R^2} \right)^{-1/2}\]

\[S = 0.2 + 8.51(M - 5)\]

where \( v = 0 \) for horizontal component and 1 for vertical, \( \Delta \) is representative distance, \( S_0 \) is correlation radius of source function (or coherence size of source) (which can be approximated by \( C_s T/2 \), where \( C_s \) is shear wave velocity), \( h \) is depth of sedimentary deposits beneath recording station and \( H \) is focal depth.

- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.

- Screen data to minimize possible bias due to uneven distribution of data among different magnitude ranges and site conditions or from excessive contribution to database from several abundantly recorded earthquakes.
• Include term, \( b_4(T)\Delta/100 \), but insignificant for most periods so remove.

• Equation only applies for \( M_{\text{min}} \leq M \leq M_{\text{max}} \), where \( M_{\text{min}} = -b_1(T)/(2b_6(T)) \) and \( M_{\text{max}} = -(1 + b_1(T))/(2b_6(T)) \). For \( M \leq M_{\text{min}} \) use \( M_{\text{min}} \) everywhere except first term. For \( M \geq M_{\text{max}} \) use \( M_{\text{max}} \) everywhere.

• Use method of Trifunac (1980) for uncertainties.

• Note estimates should only be used where signal to noise ratio (based on estimated digitisation noise) not much less than unity or slope in log-log scale is not significantly greater than \(-1\).

• Also fit data to \( \log_{10} \text{PSV}(T) = M + \text{Att}(\Delta, M, T) + b_1(T)M + b_2(T)s + b_3(T)v + b_5(T) + b_6(T)M^2 \) (where \( s = 0 \) for sediment sites, \( 1 \) for intermediate sites and \( 2 \) for basement rock sites) because depth of sediment not always known.

5.31 Atkinson (1990)

• Ground motion model is:
  \[
  \log y = c_1 + c_2(M - 6) + c_3(M - 6)^2 - \log R - c_4R
  \]

• Response parameter is pseudo-velocity for 5% damping.

• All data from rock sites.

• Includes only if a reliable seismic moment estimate exists.

• Converts ECTN vertical seismograms to equivalent horizontal component by multiplying by 1.4.

• Includes Nahanni (western Canada) earthquakes because exhibit dominant characteristics of eastern North American shocks (low seismicity area, high horizontal compressive stress, thrust mechanisms dominant, no surface ruptures despite shallow focus and rocks have high seismic velocity).

• Excludes US digital strong-motion Saguenay records due to low resolution. Two effects on response spectra: i) high frequencies contaminated by a 'mathematical noise' floor, ii) significant errors in amplitudes of low to intermediate frequencies (severity dependent on resolution degree). Inclusion of such data could lead to significant misinterpretation of these earthquakes.

• Most records (66, 65%) from \( R \geq 111 \text{ km} \) and \( M \leq 5.22 \).

• Examines residuals from equations. Finds no persistent trends except for Saguenay data (\( M = 6 \)) between \( 63 \leq R \leq 158 \text{ km} \).

• Notes data very limited in large magnitude range and that one or two earthquakes are controlling predictions.
• Notes different regression technique could change predictions for large magnitudes but i) data too limited to warrant more sophisticated analysis and ii) may be other factors, in addition to number of recordings, which should be considered in weighting each earthquake.

5.32 Campbell (1990)

• See Section 3.63.
• Response parameter is pseudo-velocity for 5% damping.

5.33 Dahle et al. (1990b) & Dahle et al. (1990a)

• See Section 3.64.
• Response parameter is pseudo-velocity for 5% damping.
• Coefficients only given for 7 periods; graphs for others.

5.34 Tamura et al. (1990)

• Ground motion model is:
  \[ S_A(T_i, GC) = a(T_i, GC)10^{b(T_i, GC)M(\Delta + 30)}C(T_i, GC) \]
• Response parameter is acceleration for 2 and 5% damping.
• Use three site categories (GC) for which perform separate regression:
  - Group 1: Ground characteristic index \( \lesssim 0.67 \), 29 records.
  - Group 2: Ground characteristic index between about 0.67 and 1.50, 46 records.
  - Group 3: Ground characteristic index \( \gtrsim 1.50 \), 22 records.

where the ground characteristic index is calculated from statistical analysis of amplitude of records. Thought to reflect the characteristic of deep soil deposits at site (1.0 means amplification is average for Japan, < 1.0 or > 1.0 means amplification is lower or greater, respectively, than average for Japan).

• Records from JMA low-magnification mechanical seismographs (natural period 6 s, damping ratio 0.55) which were instrument corrected (because sensitivity for periods > 10 s is substantially suppressed), filtered (cut-offs 1.3–2 s and 20–30 s chosen from a study of recording accuracy of instruments) and differentiated in frequency domain to find ground velocity and acceleration. Hence limit analysis to 2 to 20 s.
• Do not use resultant of two horizontal components because two components not synchronous.
• Find difference in predicted ground motion using derived equations and those from earlier equations for short periods. Find that \( b \) for earlier equations increases almost linearly with logarithm of natural period, \( T \), so find equation, by least squares, connecting \( b \) and \( \log T \). Assume this equation holds for 2 to 20 s and so find \( b \) and recalculate \( a \) and \( c \); find predictions now agree.

• Only give graphs for original coefficients for 5% damping. Give tables of coefficients for preferred second analysis.

5.35 Tsai et al. (1990)

• See Section 3.68.

• Response parameter is acceleration for 5% damping.

• Also give equations for average acceleration for 2 period bands 0.12–0.33 s and 0.07–0.2 s.

5.36 Crouse (1991)

• See Section 3.70.

• Response parameter is pseudo-velocity for 5% damping.

• Focal depths, \( h \), between 10 and 238 km.

• Notes that spectral database is biased to higher ground motions (because only higher ground motions are digitised). Suggest either using a different form of equation or impose constraints. Do not do either because (1) consider sample adequate for regression and (2) although over-estimate smaller, more distant motion, it would properly estimate larger motions which are of greater concern for design applications.

• Sets \( p_3 \), \( p_5 \) and \( p_6 \) to those for PGA equation after trial regressions; does not appreciably affect standard deviation.

• Finds relatively larger standard deviation for 3.0 and 4.0 s which suggests form of equation may be inappropriate for longer periods.

• Plots normalised residuals (not shown) which show uniform distribution.

5.37 Dahle et al. (1991)

• Ground motion model is:

\[
\ln A = c_1 + c_2 M + c_4 R + \ln G(R, R_0)
\]

where \( G(R, R_0) = R^{-1} \) for \( R \leq R_0 \)

and: \( G(R, R_0) = R_0^{-1} \left( \frac{R_0}{R} \right)^{5/6} \) for \( R > R_0 \)
5. Summary of published attenuation relations for spectral ordinates

This equation assumes spherical spreading (S waves) to $R_0$ and cylindrical spreading with dispersion (Lg waves) for larger distances.

- Response parameter is pseudo-velocity for 5\% damping.
- All data from solid rock sites.
- Follow-on study to Dahle et al. (1990b) and Dahle et al. (1990a) but remove Chinese and Friuli data and data from border zone of Eurasian plate, so data is a more genuine intraplate set.
- Use 395 records from Norwegian digital seismograms. Require that the Lg displacement amplitude spectra should have a signal-to-noise ratio of a least 4 in the frequency range $1–10\text{ Hz}$, when compared to the noise window preceding the P-wave arrival.
- For the selected seismograms the following procedure was followed. Select an Lg window, starting at a manually picked arrival time and with a length that corresponds to a group velocity window between 2.6 and $3.6\text{ km/s}$. Apply a cosine tapering bringing the signal level down to zero over a length corresponding to 5\% of the data window. Compute a Fast Fourier Transform (FFT). Correct for instrument response to obtain true ground motion displacement spectra. Bandpass filter the spectra to avoid unreasonable amplification of spectral estimates outside the main response of the instruments. Passband was between $0.8\text{ Hz}$ and $15$ or $20\text{ Hz}$, dependent on sampling rate. The amplitude spectra obtained using the direct method, using $A = \Delta t \sqrt{ZZ^*}$ where $\Delta t$ is time step and $Z$ is Fourier transformed time-history and $Z^*$ is its complex conjugate. Convert instrument corrected displacement Lg Fourier transforms to acceleration by double differentiation and an inverse FFT.
- Use 31 accelerograms from eastern N. America, N. Europe and Australia.
- Use $R_0 = 100\text{ km}$ although note that $R_0$ may be about $200\text{ km}$ in Norway.
- Correlation in magnitude-distance space is 0.20.
- Use a variant of the two-stage method to avoid an over-representation of the magnitude scaling terms at small magnitudes. Compute average magnitude scaling coefficients within cells of 0.2 magnitude units before the second stage.
- Resample data to make sure all the original data is used in a variant of the one-stage method. Compute new (resampled) data points as the average of one or more original points within a grid of cells $160\text{ km}$ by 0.4 magnitude units. Correlation in resampled magnitude-distance space is 0.10.
- Find estimated ground motions from one-stage method systematically higher than those from two-stage method particularly at short distances and large magnitudes. Effect more significant for low frequencies. Find that this is because one-stage method gives more weight to supplementary accelerograph data from near field of large earthquakes.
- Standard deviations similar for one- and two-stage equations.
5. Summary of published attenuation relations for spectral ordinates

- Scatter in magnitude scaling coefficients from first stage of two-stage method is greater for strong-motion data.
- Try fixing the anelastic decay coefficient \((c_4)\) using a previous study’s results. Find almost identical results.
- Remove 1 record from Nahanni earthquake \((M_s = 6.9)\) and recompute; only a small effect.
- Remove 17 records from Saguenay earthquake \((M_s = 5.8)\) and recompute; find significant effect for large magnitudes but effect within range of variation between different regression methods.

5.38  I.M. Idriss (1991) reported in Idriss (1993)

- See section 3.73.
- Response parameter is pseudo-acceleration for 5% damping.

5.39  Mohammadioun (1991)

- Ground motion model is:
  \[
  \log PSV(f) = k(f) + a(f)M + n(f)R
  \]
- Response parameter is pseudo-velocity for 5%.
- Records not baseline corrected so no equations for periods > 2 s.
- Does not split up data into subsets by intensity because risk of creating data populations which are not statistically significant.
- Notes that could be inconsistency with using both \(d_h\) and \(d_r\).
- Notes that results are preliminary.
- Also analyses wide range of Californian data for 96 periods between 0.013 and 5 s split into two intensity dependent subsets: those records with site intensities VI-VII (326 records) and those with site intensities VII+ (156 records). Uses \(d_r\) except for Imperial Valley earthquake where uses \(d_E\). Does not use include soil or other variables because poorly defined and lead to selection of records that are not statistically valid.

5.40  Benito et al. (1992)

- Ground motion model is:
  \[
  \ln \frac{PSA}{PSV} = c_1 + c_2M + c_3 \ln(R + R_0) + c_4(R + R_0)
  \]
• Response parameters are pseudo-acceleration, PSA, and pseudo-velocity, PSV, for 5% damping.

• Use three soil conditions (revised when cross hole information was available):

  $S = 0$ Hard and rock sites, 50 records.
  $S = 1$ Intermediate soil, 10 records.
  $S = 2$ Soft soil, 12 records.

• Use $M_L$ because most suitable for distance range of majority of records.

• Try including $c_5S$ term but find low significance values for $c_5$. Repeat regression for each soil category separately. Give results when coefficient of determination $R^2 > 0.80$, standard errors < 25% and coefficients have high significance levels.

• For PSA for $S = 0$ give coefficients for all periods, for $S = 1$ give coefficients for 0.17 to 0.2 s and for $S = 2$ give coefficients for 1 to 10 s.

• Also consider Friuli records ($4.2 \leq M_L \leq 6.5$, epicentral distances between 2 and 192 km, 14 records for $S = 0$, 23 records for $S = 1$ and 16 records for $S = 2$).

• Note need to include term in model reflecting explicitly local amplification dependent on natural period of soil as well as predominant period of incident radiation to bed rock.

5.41 Niazi & Bozorgnia (1992)

• See Section 3.74.

• Response parameter is pseudo-velocity for 5% damping.

• For some periods (0.20 s for vertical and 0.10 and 0.111 s for horizontal) constrain $c_2$ to zero so that predicted amplitude would not decrease with increasing magnitude at zero distance. Note that does not affect uncertainty.

• Note that long period filter cutoff may be too long for records from small shocks but if a shorter period was used then information on long period spectral ordinates would be lost. Note that insufficient data for well constrained results at $M_L = 5$ or $M_L > 7$.

• Find evidence for long period noise in $d$ and in Degree of Magnitude Saturation ($DMS = -(c_2d/b) \times 100$).

• Examine median and normalized standard deviation (coefficient of variation) and find evidence for decreasing uncertainty with increasing magnitude.

---

$^3$ Although coefficients should only differ by a constant because $PSA = (2\pi/T)PSV$ they do not; hence response parameters are probably not those stated.
5.42  **Tento et al. (1992)**

- See Section 3.81.
- Response parameter is pseudo-velocity for 5% damping.
- Note that correction procedure significantly affects results for $T > 2$ s. Correction procedure introduces dishomogeneity and errors due to subjectivity of choice of low frequency filter limits.

5.43  **Boore et al. (1993) & Boore et al. (1997)**

- See Section 3.83
- Response parameter is pseudo-velocity for 2, 5, 10 and 20% damping.
- Cutoff distance is lesser of distance to first digitized record triggered by S wave, distance to closest non-digitized recording, and closest distance to an operational nontriggered instrument.
- Note that can only use response spectral values between 0.1 and 2 s because of low sampling rate of older data (sometimes only 50 samples/sec) and low signal to noise ratios and filter cutoffs.
- Site categories same as in Section 3.83 but due to smaller dataset number of records in each category is less. Class A: 12 records, B: 51 records, C: 49 records.
- Smoothed coefficients using a least-squares fit of a cubic polynomial.

5.44  **Caillot & Bard (1993)**

- Ground motion model is:
  \[
  \ln y = \beta_1 + \beta_2 M + \beta_3 \ln \text{HYPO} + \beta_4 S_1
  \]
- Response parameter is acceleration for 5% damping.
- Consider three site conditions but only retain two:
  1. Rock: ENEA/ENEL S0 classification $\Rightarrow S_1 = 0$, 49 records.
  2. Thin alluvium: depth of soil between 5 and 20 m, ENEA/ENEL S1 classification $\Rightarrow S_1 = 1$, 34 records.
- Selected records have $d_e < 60$ km and focal depth less than 30 km. Data selected so that mean and standard deviation of magnitude and hypocentral distance in each site category are equal, in this case 5.1 and 20 km respectively.
- All records processed using common procedure. High pass filtered with $f_l = 0.5$ Hz, instrument corrected and low pass filtered with $f_h = 30$ Hz.
Considered three things when choosing method of analysis:

1. Attenuation equation must have some physical basis.
2. Parameters must be available for original data set.
3. Attenuation equation must be easy to use in a predictive manner.

Hypocentral distance used because rupture not known for most earthquakes. Note that only important for magnitudes greater than about 6.5 and distances less than about 15 km.

Originally included another set of data (32 records) from thick soil with depth greater than about 20 m (ENEA/ENEL classification S2) but note that results for this category are much more uncertain, possibly due to diversity of geotechnical characteristics of soils. Therefore excluded.

Regression was done using two-stage algorithm (Joyner & Boore, 1981) and a weighted one-stage method. Weight by splitting the magnitude and distance ranges into four intervals and weighting data in each interval inversely proportionally to number of points in the bin. Thus gives roughly equal weight to each part of magnitude-distance space.

Note that results from two-stage regression for this set of data may be misleading because for some periods it does not bring any ‘explanation’ to the variance of initial data. The two-stage and normal one-stage and weighted one-stage yield significant changes in predictions.

Repeat analysis using only S0 subset and using only S1 subset but no significant changes in magnitude or distance scaling between the two subsets so consider complete set and include a constant scaling between rock and shallow soil. If set is reduced to 53 records with similar spread of magnitude, distance and sites then difference between shallow soil and rock is not significant.

Note that confidence interval should be given by formula in Weisburg (1985) not normal way of simply using standard deviation.

5.45 Campbell (1993)

- See Section 3.84.
- Response parameter is pseudo-acceleration for 5% damping.
- Notes that equation can predict smaller pseudo-acceleration than PGA for short periods, which is impossible in practice. Hence pseudo-acceleration for periods $\leq 0.2 \text{s}$ should be constrained to be $\geq$ PGA.

5.46 Sadigh et al. (1993) & Sadigh et al. (1997)

- See Section 3.86
5. Summary of published attenuation relations for spectral ordinates

- Ground motion model for deep soil is:

\[
\ln y = C_1 + C_2 M - C_3 \ln(r_{rup} + C_4 e^{C_5 M}) + C_6 + C_7 (8.5 - M)^{2.5}
\]

where \( C_6 \) is different for reverse and strike-slip earthquakes.

Ground motion model for rock is:

\[
\ln y = C_1 + C_2 M + C_3 (8.5 - M)^{2.5} + C_4 \ln(r_{rup} + \exp(C_5 + C_6 M)) + C_7 \ln(r_{rup} + 2)
\]

where \( C_1 \) is different for reverse and strike-slip earthquakes.

Vertical equations do not include \( C_7 \).

- Response parameter is acceleration for 5% damping.
- Perform analysis on spectral amplification \( \ln(SA/PGA) \).
- Give smooth coefficients.
- Find standard errors to be dependent on magnitude and fit to a linear relation.

5.47 Sun & Peng (1993)

- See section 3.88.
- Response parameter is acceleration for 5% damping.
- Coefficients not given.

5.48 Boore et al. (1994a) & Boore et al. (1997)

- See Section 3.90
- Find no evidence for magnitude dependent uncertainty for spectral values.
- Find no evidence for amplitude dependent uncertainty for spectral values.
- Note that effect of basin-generated surface waves can have an important effect but probably not at periods between 0.1 and 2 s.

5.49 Climent et al. (1994)

- Inspect observed and predicted values and conclude no clear difference between upper-crustal and subduction zone ground motions. Equations are for region regardless of earthquake source type.
5.50 Fukushima et al. (1994) & Fukushima et al. (1995)

- See Section 3.91.
- Response parameter is pseudo-velocity for 5% damping.
- Only give graphs of coefficients.
- Note possible noise contamination, for periods $< 0.1$ s, in coefficients.

5.51 Lawson & Krawinkler (1994)

- See Section 3.92.
- Response parameter is acceleration for 5% damping.


- Ground motion model is:

$$
\log_{10} \hat{PSV} = M_\prec + \text{Att} + b_1 M_\succ + b_2^{(1)} S^{(1)} + b_2^{(2)} S^{(2)} + b_3 v + b_4 + b_5 M_\succ
$$

where

$$
M_\prec = \min(M, M_{\max})
$$

$$
M_{\max} = \frac{-(1 + b_1)}{2b_5}
$$

$$
M_\succ = \max(M_\prec, M_{\min})
$$

where

$$
M_{\min} = \frac{-b_1}{2b_5}
$$

$$
\text{Att} = \begin{cases} 
    A_0 \log_{10} \Delta & \text{for } R \leq R_0 \\
    A_0 \log_{10} \Delta_0 - \frac{(R - R_0)}{200} & \text{for } R > R_0 
\end{cases}
$$

with:

$$
A_0 = \begin{cases} 
    -0.761 & \text{for } T \geq 1.8 \text{ s} \\
    -0.831 + 0.31 \log_{10} T - 0.161 (\log_{10} T)^2 & \text{for } T < 1.8 \text{ s}
\end{cases}
$$

$$
\Delta = S \left[ \ln \left( \frac{R^2 + H^2 + S^2}{R^2 + H^2 + S_0^2} \right) \right]^{-\frac{1}{2}}
$$

$$
\Delta_0 = \Delta(R_0)
$$

where

$$
R_0 = \frac{1}{2} \left[ \frac{-200A_0(1 - S_0^2/S^2)}{\ln 10} + \left[ \frac{200A_0(1 - S_0^2/S^2)}{\ln 10} \right]^2 - 4H^2 \right]
$$

where $\Delta$ is ‘representative’ distance, $S$ is ‘size’ of fault, $S_0$ is coherence radius of source and $v$ is component orientation ($v = 0$ for horizontal, $v = 1$ for vertical).

- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Consider three geological site conditions:
Summary of published attenuation relations for spectral ordinates

$s = 0$ Sediment: $\Rightarrow S^{(1)} = 0, S^{(2)} = 0$, 151 records.
$s = 1$ Intermediate sites: $\Rightarrow S^{(1)} = 1, S^{(2)} = 0$, 106 records.
$s = 2$ Basement rock: $\Rightarrow S^{(1)} = 0, S^{(2)} = 1$, 54 records.

- Consider three local site categories but only retain two:
  $s_L = 0$ Rock: $\Rightarrow S^{(1)}_L = 0$, 100 records.
  $s_L = 1$ Stiff soil: $\Rightarrow S^{(1)}_L = 1$, 205 records.

- Cannot include those records from deep soil sites ($s_L = 2$) because only six records.
- Most earthquakes are shallow, depth $H < 25$ km.
- Most records have epicentral distances, $R < 50$ km.
- Most have magnitudes between 3 and 6.
- Only use records with high signal-to-noise ratio. Quality of records is not adequate for response spectrum calculation outside range 0.04 to 2 s.
- Analysis performed using residue 2-step method. In first step use only records from $M \geq 4.25$ to force a concave form to magnitude scaling (if all records used then find a convex parabola), $s_L$ parameter is not included. In second step find $s_L$ dependence from residuals of first stage including all magnitudes.
- Give expressions to describe distribution of residuals so that can find confidence limits, unlike normal standard deviation based method, see Trifunac (1980).
- Note difference between western USA and Yugoslavian ground motions.

5.53 Mohammadioun (1994a)

- Ground motion model is:
  \[
  \log SR(f) = k(f) + \alpha(f) M + n(f) \log R
  \]
- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Uses records from rock sites ($V_s \geq 750$ ms$^{-1}$).
- Half of records from $R < 30$ km and significant number from $R < 10$ km.
- Most (82%) records from earthquakes with $6.2 \leq M \leq 7.0$.
- Coefficients not given, only results.
5. Summary of published attenuation relations for spectral ordinates

5.54 Mohammadioun (1994b)

- Ground motion model is:
  \[
  \log V(f) = k(f) + \alpha(f)M + n(f) \log R 
  \]
- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Choose W. USA to make data as homogeneous as possible in terms of seismotectonic context and parameter quality.
- Notes recording site-intensities may only be average intensity values, thereby neglecting possible microzoning effects.
- Uses $M_L$ because generally available and uniformly determined. Notes may not be best choice.
- Records from free-field and typical of different intensity classes.
- Does regression for records associated with three different intensities: V (184 records, $5.5 \lesssim R \lesssim 200 \text{ km}$), VI (256 records, $3 \lesssim R \lesssim 250 \text{ km}$), VII (274 records, $1 \lesssim R \lesssim 150 \text{ km}$) and four different intensity groups: V-VI, VI-VII, VII and more (extra 25 records, $1 \lesssim R \lesssim 100 \text{ km}$) and V and less (extra 30 records, $25 \lesssim R \lesssim 350 \text{ km}$).
- Graph of $\alpha(f)$ given for horizontal component for the four intensity groups and graph of $n(f)$ for vertical component for intensity VI.

5.55 Musson et al. (1994)

- See section 3.94.
- Response parameter is pseudo-velocity for 5% damping.
- More data because use analogue records as well.

5.56 Theodulidis & Papazachos (1994)

- Use same data, equation and procedure as Theodulidis & Papazachos (1992), see Section 3.82.
- Response parameter is pseudo-velocity for 0, 2, 5, 10 and 20% damping.
- Note lack of near-field data ($R < 20 \text{ km}$, $M > 6.2$) to constrain $R_0$.
- Only give graphs of original coefficients but give table of smoothed (using a $\left(\frac{1}{4} + \frac{1}{2} + \frac{1}{4}\right)$ running average along $\log T$) coefficients for 13 periods and all 5 damping levels.
- Note large residuals for $T > 0.5 \text{ s}$ due mainly to different digitising and processing procedures which significantly affect long period spectral values.
• Check histograms of residuals for 0.1, 0.3, 0.5, 1, 3 and 5 s and find similar to normal distribution.

• Note no data from \( R < 30 \text{ km} \) for \( M > 6.5 \) so state caution is required for use of equations in that range. Also suggest do not use equations for \( M > 7.5 \) or for \( R > 130 \text{ km} \).

• Note may not apply for very soft soils.

• Note lack of data.

5.57 Dahle et al. (1995)

• See Section 3.99.

• Derive spectral attenuation relations for almost double number of periods given. Coefficients smoothed using a third degree polynomial.

5.58 Lee & Trifunac (1995)

• Based on Lee et al. (1995). See Section 3.100.

• Response parameter is pseudo-velocity for 5\% damping (also use 0, 2, 10 and 20\% damping but do not report results).

• Before regression, smooth the actual response spectral amplitudes along the \( \log_{10} T \) axis to remove the oscillatory (‘erratic’) nature of spectra.

• State that for small earthquakes \( (M \approx 3) \) equations only valid up to about 1 s because recorded spectra are smaller than recording noise for longer periods.

• Only give coefficients for 0.04, 0.06, 0.10, 0.17, 0.28, 0.42, 0.70, 1.10, 1.90, 3.20, 4.80 and 8.00 s but give graphs for rest.

• Assume that distribution of residuals from last step can be described by probability function:

\[
p(\epsilon, T) = \left[ 1 - \exp(-\exp(\alpha(T) + \beta(T))) \right]^{n(T)}
\]

where \( p(\epsilon, T) \) is probability that \( \log \text{PSV}(T) - \log \hat{\text{PSV}}(T) \leq \epsilon(T) \), \( n(T) = \min[10, \lfloor 25/T \rfloor] \), \( \lfloor 25/T \rfloor \) is integral part of \( 25/T \). Arrange residuals in increasing order and assign an ‘actual’ probability of no exceedance, \( p^*(\epsilon, T) \) depending on its relative order. Estimate \( \alpha(T) \) and \( \beta(T) \) by least-squares fit of \( \ln(-\ln(1 - p^{1/n(T)})) = \alpha(T)\epsilon(T) + \beta(T) \). Test quality of fit between \( \hat{p}(\epsilon, T) \) and \( p^*(\epsilon, T) \) by \( \chi^2 \) and Kolmogorov-Smirnov tests. For some periods the \( \chi^2 \) test rejects the fit at the 95\% level but the Kolmogorov-Smirnov test accepts it.
5.59  **Ambraseys et al. (1996) & Simpson (1996)**

- See Section 3.104.
- Response parameter is acceleration for 5\% damping.
- Do no smoothing because if plotted on a normal scale then smoothing should be done on $T$, but if on log-log plot then smoothing should be done on $\log T$.


- See Section 3.105.
- Response parameter is acceleration for 5\% damping.

5.61  **Bommer et al. (1996)**

- See section 3.107.
- Response parameter is pseudo-velocity for unspecified damping.

5.62  **Crouse & McGuire (1996)**

- See section 3.108.
- Response parameter is pseudo-velocity for 5\% damping.
- Find $k_1$ not significantly different than 1 for $T \leq 0.15\, s$ and $k_2$ not significantly different than 1 for $T \leq 0.50\, s$.

5.63  **Free (1996) & Free et al. (1998)**

- See Section 3.109.
- Response parameter is acceleration for 5\% damping.
- Finds including focal depth, $h$, explicitly has dramatic effect on predicted spectra at short distances but insignificant effect at large distances.
- Repeats analysis using only E. N. American data. Finds significantly larger amplitudes than predictions from combined set for short and intermediate distances for periods $> 0.3\, s$ but similar spectra for large distances.
5.64 Molas & Yamazaki (1996)

- Response parameters are absolute acceleration and relative velocity for 5% damping.

5.65 Ohno et al. (1996)

- See Section 3.110.
- Response parameter is acceleration for 5% damping.
- Plot amplitude factors from first stage against $M_w$; find well represented by linear function.
- Do not give table of coefficients only graphs of coefficients.

5.66 Sabetta & Pugliese (1996)

- Ground motion model used is:
  \[
  \log_{10} Y = a + bM - \log_{10} \sqrt{d^2 + h^2} + e_1S_1 + e_2S_2
  \]
- Response parameter, $Y$, is pseudo-velocity for 5% damping
- Remove anelastic decay term because it was not significant at $\alpha = 0.1$ and sometimes it was positive. Originally geometrical decay coefficient $c$ was allowed to vary but find it is close to $-1$ so constrain.
- Use three site categories:
  \( S_1 = 1, S_2 = 0 \) Shallow: depth $H \leq 20$ m alluvium $400 \leq V_s \leq 800$ ms$^{-1}$.
  \( S_1 = 0, S_2 = 1 \) Deep: depth $H > 20$ m alluvium $400 \leq V_s \leq 800$ ms$^{-1}$.
  \( S_1 = 0, S_2 = 0 \) Stiff: $V_s > 800$ ms$^{-1}$.
- Accelerograms digitised at 400 samples/sec. Bandpass frequencies chosen by an analysis of signal and fixed trace Fourier spectra. $f_{\text{min}}$ between 0.2 and 0.7 Hz most about 0.3 Hz and $f_{\text{max}}$ between 20 and 35 Hz most about 25 Hz. Instrument correction applied.
- Use one-stage method although two-stage method yields similar results.
- Also present smoothed coefficients.
5.67 **Spudich et al. (1996) & Spudich et al. (1997)**

- See Section 3.114
- Response parameter is pseudo-velocity for 5% damping.
- Only use spectral values within the passband of the filter used to correct records hence number of records used for each period varies, lowest number is 99 for periods between 1.7 and 2.0 s.
- Smooth coefficients using cubics or quadratics.

5.68 **Abrahamson & Silva (1997)**

- Ground motion model is:

  \[
  \ln Sa = f_1 + F f_3 + HW f_{HW}(M) f_{HW}(R_{rup}) + S f_5
  \]

  \[
  f_1 = \begin{cases} 
  a_1 + a_2(M - c_1) + a_{12}(8.5 - M)^n + [a_3 + a_{13}(M - c_1)] \ln R & \text{for } M \leq c_1 \\
  a_1 + a_4(M - c_1) + a_{12}(8.5 - M)^n + [a_3 + a_{13}(M - c_1)] \ln R & \text{for } M > c_1 
  \end{cases}
  \]

  where \( R = \sqrt{r_{rup} + c_4^2} \)

  \[
  f_3 = \begin{cases} 
  a_5 & \text{for } M \leq 5.8 \\
  a_5 + \frac{a_6 - a_5}{c_1 - 5.8}(M - 5.8) & \text{for } 5.8 < M < c_1 \\
  a_6 & \text{for } M \geq c_1 
  \end{cases}
  \]

  \[
  f_{HW}(M) = \begin{cases} 
  M - 5.5 & \text{for } 5.5 < M < 6.5 \\
  1 & \text{for } M \geq 6.5 
  \end{cases}
  \]

  \[
  f_{HW}(r_{rup}) = \begin{cases} 
  0 & \text{for } r_{rup} < 4 \\
  a_9 r_{rup}^{-4} & \text{for } 4 < r_{rup} < 8 \\
  a_9 & \text{for } 8 < r_{rup} < 18 \\
  a_9 \left(1 - \frac{r_{rup} - 18}{1}ight) & \text{for } 18 < r_{rup} < 24 \\
  0 & \text{for } r_{rup} > 25 
  \end{cases}
  \]

  \[
  f_5 = a_{10} + a_{11} \ln(\hat{PGA} + c_5)
  \]

  where \( \hat{PGA} \) is expected peak acceleration on rock as predicted by the attenuation equation with \( S = 0 \).

- Response parameter is acceleration for unspecified\(^5\) damping.

- Use two site categories:

\(^4\) \( f_3 \) given in Abrahamson & Silva (1997) was modified to ensure homogeneity and a linear variation in \( f_3 \) with magnitude.

\(^5\) It is probably 5%.
5. Summary of published attenuation relations for spectral ordinates

\( S = 0 \) Rock: rock \((V_s > 600 \, \text{ms}^{-1})\), very thin soil \((< 5 \, \text{m})\) over rock or soil 5 to 20 m thick over rock.

\( S = 1 \) Deep soil: deep soil in narrow canyon \((\text{soil} > 20 \, \text{m} \text{ thick and canyon} < 2 \, \text{km} \text{ wide})\) or deep soil in broad canyon \((\text{soil} > 20 \, \text{m} \text{ thick and canyon} > 2 \, \text{km} \text{ wide})\).

- All records reprocessed using common procedure. Interpolated to 400 samples/sec, low-pass filtering with corner frequency selected for each record based on visual examination of Fourier amplitude spectrum, instrument corrected, decimated to 100 to 200 samples/sec depending on low-pass corner frequency, baseline correction using 0 to 10 degree polynomial, high-pass filtered based on integrated displacements.

- Only use response spectral data within frequency band \(1.25 f_h \) to \(0.8 f_i\) to avoid effects of filter roll-off. Hence number of records used for regression at each period varies, minimum number is less than 100 records for \(0.01 \, \text{s}\).

- Well distributed dataset in terms of magnitude and distance.

- Supplement data with records from Gazli, Friuli, Tabas, Taiwan, Nahanni and Spitak.

- Consider source mechanism: reverse \(\Rightarrow F = 1\), reverse/oblique \(\Rightarrow F = 0.5\), others (strike-slip and normal) \(\Rightarrow F = 0\).

- Consider hanging wall effect: if over hanging wall \(HW = 1\), otherwise \(HW = 0\).

- Note that interpretation of \(c_4\) is not clear for their distance measure but yields better fit.

- Model nonlinear soil response by \(f_5\).

- Model uncertainty as magnitude dependent.

- Fix some coefficients to be independent of period so that response spectral values vary smoothly with distance, magnitude and period.

- Smooth coefficients using piecewise continuous linear fits on log period axis. For highly correlated coefficients, smooth one coefficient and re-estimate other coefficients.

5.69 Atkinson (1997)

- Ground motion model used is:

\[
\log \text{PSA} = c_0 + c_1 (M_w - 6) + c_2 (M_w - 6)^2 + c_3 h - c_{a_1} \log R - c_{a_2} R + c_a S
\]

with: \(c_{a_2} = c_{a_3} + c_{a_4} h\)

- Response parameter is pseudo-acceleration for 5\% damping.

- Uses two site categories (no soil profiles were available for Cascadia region):

\( S = 0 \) Rock: average \(V_s\) assumed to be about \(2000 \, \text{ms}^{-1}\).
5. Summary of published attenuation relations for spectral ordinates


- See Section 3.116

- Ground motion model (horizontal component) is:

\[
\ln SA_H = \ln A_H + c_1 + c_2 \tanh[c_3(M - 4.7)] + (c_4 + c_5M)R_{\text{SEIS}} + 0.5c_6S_{\text{SR}} \\
+ c_6S_{\text{HR}} + c_7 \tanh(c_8D)(1 - S_{\text{HR}}) + f_{\text{SA}}
\]

\[
f_{\text{SA}} = \begin{cases} 
0 & \text{for } D \geq 1 \text{ km} \\
 c_6(1 - S_{\text{HR}})(1 - D)(1 - 0.5S_{\text{SR}}) & \text{for } D < 1 \text{ km}
\end{cases}
\]

- Ground motion model (vertical component) is:

\[
\ln SA_V = \ln SA_H + c_1 + b_2M + c_2 \tanh[d_1(M - 4.7)] + d_3 \tanh[d_2(M - 4.7)] \\
+ b_3 \ln[R_{\text{SEIS}} + b_4 \exp(b_5M)] + b_6 \ln[R_{\text{SEIS}} + b_7 \exp(b_8M)] + b_9F \\
+ [c_4 \tanh(d_3D) + c_5 \tanh(d_4D)](1 - S_{\text{SR}})
\]
• Response parameter is pseudo-acceleration for 5% damping.

• Notes importance of depth to basement rock, \( D \), for modelling long period site response. For shallow sediments defines \( D \) as depth to top of Cretaceous or older deposits, for deep sediments determine \( D \) from crustal velocity profiles where define basement as crystalline basement rock or sedimentary deposits having a P-wave velocity \( \geq 5 \text{ kms}^{-1} \) or shear-wave velocity \( \geq 3 \text{ kms}^{-1} \) (called 'seismic basement' by geophysicists).

• Uses different data than for PGA equations hence: reverse (3), thrust (H:9, V:6), reverse-oblique (2) and thrust-oblique (0), total (H:14, V:11) (H:140 records, V:85 records), strike-slip (H:124 records, V:88 records). Only two normal faulting earthquakes in horizontal set of records (contributing 2 records) so a difference in not modelled although \( F = 0.5 \) is given as first approximation (later revised to \( F = 0 \)) to use as for PGA case.

• Only excludes records from toe and base of dams, included those from buildings and bridge columns which were excluded from PGA study, because of lack of data.

• Uses weighted regression analysis. Assigns recordings from a given earthquake that fell within the same distance interval (ten logarithmical spaced) same weight as those recordings from other earthquakes that fell within the same distance interval. Gives recordings from a given earthquake that occurred at the same site location the same cumulative weight as a single recording at that distance, thus reducing the bias.

• Performs analysis on spectral ratio \( \ln(PSA/PGA) \) because of unacceptably large period-to-period variability in regression coefficients when direct regression is applied and strongly correlated coefficients. Notes that are too many regression coefficients so it was necessary to perform analysis in many steps, at each step different coefficients are determined and detrended and residuals examined to find appropriate functional forms for trends present. Yields more stable results.

• No consideration of nontriggering instruments made, unlike PGA study.

5.71 Schmidt et al. (1997)

• See Section 3.119.

• Response parameter is pseudo-velocity for 5% damping.

5.72 Youngs et al. (1997)

• See Section 3.120.

• Ground motion model used is:

\[
\ln(\text{SA}/\text{PGA}) = B_1 + B_2(10 - M)^2 + B_3 \ln \left[ r_{\text{rup}} + C_1 + C_2 M \right]
\]

where \( \alpha_1 \) and \( \alpha_2 \) are set equal to \( C_4 \) and \( C_5 \) of appropriate PGA equation.
• Response parameter, $SA$, is acceleration for 5% damping.

• Do analysis on response spectral amplification because digitised and processed accelerograms used for spectral attenuation is only a subset of PGA database and they are often those with strongest shaking. Hence analysis directly on spectral accelerations may be biased.

• Smooth coefficients.

5.73 Bommer et al. (1998)

• Ground motion model is:

$$
\log(\text{SD}) = C_1 + C_2 M + C_4 \log r + C_A S_A + C_S S_S
$$

$$
r = \sqrt{d^2 + h_0^2}
$$

• Response parameter is displacement for 5, 10, 15, 20, 25 and 30% damping.

• Use three site conditions:

  R Rock: $V_s > 750 \text{ ms}^{-1}$, $S_A = 0$, $S_S = 0$, 30–45 records.

  A Stiff soil: $360 < V_s \leq 750 \text{ ms}^{-1}$, $S_A = 1$, $S_S = 0$, 56–92 records.

  S Soft soil: $180 < V_s \leq 360 \text{ ms}^{-1}$, $S_A = 0$, $S_S = 1$, 32–43 records.

• Use subset of data of Ambraseys et al. (1996) (see 3.104) data with a few changes and exclusion of records from earthquakes with $M_s < 5.5$ because ground motion at long periods was of interest and to increase likelihood of acceptable single-to-noise ratio at longer periods.

• Each record individually filtered. Firstly filter record with sharp low cut-off at 0.1 Hz and plot velocity and displacement time-histories. Check, visually, whether contaminated by noise and if so increase cutoff frequency by small amount and repeat procedure until resulting velocity and displacement time-histories are deemed acceptable and no significant improvement is observed by further increase of cutoff frequency. Instrument correction not applied because high frequency distortion caused by transducer characteristics not important for displacement spectra. Only use each record for regression for periods up to 0.1 s less than filter cutoff used for that record to avoid distortion by filter, hence as period increases number of data points decreases.

• Regression procedure same as Ambraseys et al. (1996), see 3.104.

5.74 Perea & Sordo (1998)

• Ground motion model is:

$$
\ln Pa = \beta_1 + \beta_2 M + \beta_3 \ln(R + 25)
$$

• Response parameter is pseudo-acceleration for 5% damping.
• All records from five medium soft soil sites.

• Use $m_b$ for $M < 6$ and $M_s$ otherwise, because $m_b$ is more representative of released energy for small earthquakes and $M_s$ better represents energy release for large earthquakes because $m_b$ saturates starting from $M > 6$.

• Try including anelastic decay term, $\beta_4 R$ but it does not significantly affect standard deviation.

• Also repeat analysis for three other zones. Zone 1: 3 earthquakes, 3 records ($5.0 \leq M \leq 6.4$, $80 \leq R \leq 156$ km) for which conclude has too limited data for reliable equation. Zone 3: 11 earthquakes, 13 records ($4.5 \leq M \leq 7.7$, $251 \leq R \leq 426$ km) for which find fits spectra of medium sized shocks better than large shocks because of lack of data for large earthquakes. Zone 4: 4 earthquakes, 7 records ($5.1 \leq M \leq 6.2$, $356 \leq R \leq 573$ km) for which find $\beta_2$ is negative and $\beta_3$ is positive for some periods (which is nonphysical) which state is due to limited number of earthquakes and their similar epicentral distances.

• Find fit spectra of medium sized earthquakes than large earthquakes because of lack of data from large earthquakes.

• Only give graphs of coefficients.

5.75 **Shabestari & Yamazaki (1998)**

- Ground motion model is:

  \[
  \log y(T) = b_0(T) + b_1(T) M + b_2(T) - \log r + b_3(T) h + c_i(T)
  \]

  where $c_i(T)$ is the station coefficient, reflecting relative site effect for each period, assuming zero mean for all stations.

- Response parameters are acceleration and velocity for 5% damping.

- Include at least five earthquakes with $M_{JMA} \geq 7.2$.

- Exclude earthquakes with focal depths, $h$, equal to 0 km or greater than 200 km.

- Exclude records with vectorial composition of PGA less than 0.01 ms$^{-2}$.

- Use three-stage iterative partial regression method.

- For $T \geq 6$ s constrain horizontal anelastic coefficient to zero because get positive coefficient.

- See Yamazaki et al. (2000) for examination of station coefficients.

5.76 **Chapman (1999)**

- See Section 3.131.

- Response parameter is pseudo-velocity for 2, 5 and 10% damping.

---

6 The following values are from their Table 1 which does not match with their Figure 3.
5. Summary of published attenuation relations for spectral ordinates

5.77 Spudich et al. (1999)

- See Section 3.134.
- Response parameter is pseudo-velocity for 5% damping.
- Use only use response spectral data within frequency band $1.25f_h$ to $0.75f_l$ to avoid effects of filter roll-off. Eight records were not processed like the rest so use only response spectral values within 0.1 to 1 s. Hence number of records used for regression at each period varies, minimum number used is 105 records for 2 s.
- Give smoothed coefficients using cubic function.


- See Section 3.137.
- Response parameter is acceleration for 5% damping.
- Find $b_2$ and $b_3$ significantly different than 0 at 5% level for all periods but $b_A$ and $b_S$ not significant for many periods (especially for vertical component).
- Find deamplification for vertical component on soft and stiff soil compared with rock. Check by removing all 34 Northridge records (many of which were on soft soil) and repeat analysis; find little change.
- Also derive equations for horizontal response under influence of vertical acceleration using a bending SDOF model; find little change in response.

5.79 Bozorgnia et al. (2000)

- See Section 3.138.
- Response parameter is acceleration for 5% damping.
- Different set of data than for PGA hence: strike-slip: 20 earthquakes (including one normal faulting shock), reverse: 7 earthquakes and thrust: 6 earthquakes.
- Find considerable period-to-period variability in coefficients causing predicted spectra to be very jagged near limits of magnitude and distance ranges so carried out partial smoothing of coefficients.

5.80 Campbell & Bozorgnia (2000)

- See Section 3.139.
- Response parameter is pseudo-acceleration for 5% damping.

- Ground motion model is:
  \[
  \log Y = a + b(M-6) + c(M-6)^2 + d \log(D^2+h^2)^{1/2} + eG_c + fG_d
  \]

  - Response parameter is pseudo-velocity for 5% damping.
  - Use three site categories (based on average shear-wave velocity, \(V_s\), over top 30 m):
    
    **Classes A+B** Hard rock or rock: \(V_s > 760 \text{ ms}^{-1}\), \(G_c = 0\), \(G_d = 0\), 35 records.
    
    **Class C** Very dense soil and soft rock: \(360 < V_s \leq 760 \text{ ms}^{-1}\), \(G_c = 1\), \(G_d = 0\), 97 records.
    
    **Class D** Stiff soil: \(180 \leq V_s \leq 360 \text{ ms}^{-1}\), \(G_c = 0\), \(G_d = 1\), 141 records.

  - Records from free-field or ground level of structures no more than two storeys in height.
  - Smooth coefficients using cubic polynomial.
  - Do not give coefficients for all periods.
  - Find cannot use equation to predict near-field ground motions.

5.82  Kawano et al. (2000)

- Ground motion model is:
  \[
  \log S_i(T) = a(T)M - \{b(T) X_{eq} + \log X_{eq}\} + c_i(T)
  \]
  where \(c_i(T)\) is an individual site amplification factor for each of 12 stations.

  - Response parameter is acceleration for 5% damping.
  - Focal depths between 0 and 60 km.
  - Use data either recorded at ground surface where \(0.5 \leq V_s \leq 2.7 \text{ kms}^{-1}\) (1.7 \(\leq V_p \leq 5.5 \text{ kms}^{-1}\)) or obtained by analytically removing effects of uppermost surface layers of ground from underground observation data (or by stripping-off analysis) using underground structure.
  - Use only ground motion after arrival of first S wave because most important for aseismic design.
  - Do not give table of coefficients, only graphs of coefficients.
  - Define amplification factors, \(d_i(T) = c_i(T) - c_0(T)\) for horizontal motion and \(d_i(T) = c_{v,i}(T) - c_0(T)\) for vertical motion, where \(c_0(T)\) is the regression coefficient for data observed at ground layer equivalent to seismic bedrock.
  - Find \(S_h(T) = S_0(T) \alpha_h(T) \beta_h(T)\) where \(S_h(T)\) is \(S_0(T)\). \(\alpha_h(T) = (V_s/V_{s,b})^{-\delta_h(T)}\) for \(T \leq T_{s,1}\) and \(\alpha_h(T) = \alpha_h(T_{s,1})\) for \(T > T_{s,1}\) where \(T_{s,1}\) is the primary predominant period of surface layer. \(\beta_h(T) = 1\) for \(T \leq T_{s,1}\), \(\beta_h(T) = (T/T_{s,1})^{-\log(\alpha_h(T_{s,1}))}\) for \(10T_{s,1} > T > T_{s,1}\) and \(\beta_h(T) = 10^{-\log(\alpha_h(T_{s,1}))}\) for \(T \geq 10T_{s,1}\). \(V_{s,b} = 2.2 \text{ kms}^{-1}\). Similar relationships are defined for vertical motion, \(S_v(T)\).
• Note that relation does not include effect of source mechanism or rupture propagation, so probably less valid in near-fault region.

5.83 Kobayashi et al. (2000)

• See Section 3.141.
• Response parameter is pseudo-velocity for 5% damping.
• Use significantly less records for $T > 1.5 \, \text{s}$.

5.84 McVerry et al. (2000)

• Ground motion model for crustal earthquakes is (using form from Abrahamson & Silva (1997), see Section 5.68):

$$
\ln \text{SA}'(T) = C_1(T) + C_{4, AS}(M - 6) + C_{3, AS}(T)(8.5 - M)^2 + C_5(T)r
+ (C_8(T) + C_{6, AS}(M - 6)) \ln (r^2 + C_{10, AS}(T))^{1/2} + C_{46}(T)r_{\text{VOL}}
+ \{C_2(T)r + C_{44}(T) + (C_9(T) + C_7(T)(M - 6))\ln (r^2 + C_{10, AS}(T))^{1/2}
- \ln C_{10, AS}\}
+ \{C_{29}(T)\}
+ \{C_{30, AS}(T) \ln (\text{PGA}'_{W,A} + 0.03) + C_{43}(T)\}
+ C_{32}CN + C_{33, AS}(T)CR
$$

Also add on hanging wall term, see Section 5.68. Subscript $AS$ denotes those coefficients from Abrahamson & Silva (1997). Three parts of equation within $\{\ldots\}$ are for site conditions MA/SA, Class B and Class C respectively. $\text{PGA}'_{W,A}$ is the predicted PGA ($\text{SA}'(0)$) for weak rock category. $CN = -1$ for normal mechanism and 0 otherwise. $CR = 0.5$ for reverse/oblique, 1.0 for reverse and 0 otherwise. Ground motion model for subduction zone earthquakes is (using form from Youngs et al. (1997), see Section 5.72):

$$
\ln \text{SA}'(T) = C_{11}(T) + [C_{12, Y} + (C_{17, Y}(T) - C_{17}(T))C_{19, Y}]
+ C_{13, Y}(T)(10 - M)^3 + C_{17}(T) \ln (r + C_{18, Y} \exp (C_{19, Y}M)) + C_{20}(T)HC
+ C_{24}(T)SI + C_{46}(T)r_{\text{VOL}}(1 - DS)
+ \{C_{44}(T) + C_{16}(T)(\ln (r + C_{18, Y} \exp (C_{19, Y}M))
- \ln (C_{18, Y} \exp (C_{19, Y}M)))\}
+ \{C_{29}(T)\}
+ \{C_{30, Y}(T) \ln (\text{PGA}'_{W,A} + 0.03) + C_{43}(T)\}
$$

Subscript $Y$ denotes those coefficients from Youngs et al. (1997). Three parts of equation within $\{\ldots\}$ are for site conditions MA/SA, Class B and Class C respectively. $SI = 1$ for subduction interface and 0 otherwise. $DS = 1$ for deep slab and 0 otherwise. $r_{\text{VOL}}$ is length of path that lies in the volcanic zone.
Summary of published attenuation relations for spectral ordinates

- Response parameter is acceleration for 5% damping.
- Use four site conditions (mostly based on geological descriptions rather than measured shear-wave velocity):
  - WA Weak rock sites, or sites with soil layer of thickness \( \leq 3 \text{ m} \) overlying weak rock.
  - MA/SA Moderate-strength or strong rock sites, or sites with soil layer of thickness \( \leq 3 \text{ m} \) overlying moderate-strength or strong rock.
  - Class B Intermediate soil sites or sites with soil layer of thickness \( > 3 \text{ m} \) overlying rock.
  - Class C Flexible or deep soil sites with natural periods \( > 0.6 \text{ s} \).
- Justify soil categories using statistical studies of residuals at early stage. Exclude response spectra from very soft soil sites \( (V_s < 150 \text{ ms}^{-1} \text{ for depths of } \geq 10 \text{ m}) \).
- Use data for PGA equation from Zhao et al. (1997), see Section 3.121.
- Exclude records from bases of buildings with >4 storeys.
- Use less records for long periods because noise.
- Lack of data prevent development of robust model purely from NZ data. Plot residuals of predicted response using published attenuation relations (base models) for other areas to find relations which gave good representations of NZ data. Then modify some coefficients to improve match; imposing constraints so that the selected models control behaviour at short distances where NZ data lacking. Require crustal and subduction zone expressions for rock sites to match magnitude dependence of base models at \( r = 0 \text{ km} \). Constrain coefficients that occur nonlinearly and nonlinear site response coefficient for Class C to base model values.
- Find anelastic attenuation term and additive terms for shallow slab earthquakes for subduction earthquakes not statistically significant. Also differences in attenuation rates for shallow slab, deep slab and interface earthquakes not statistically significant.
- Exclude deep slab earthquakes because of high attenuation in mantle; note equation should not be used for such earthquakes.
- Different attenuation rate for site category MA/SA because of magnitude dependence apparent in residuals for simpler model.
- Eliminate nonlinear site response term for Class B because find unacceptable (positive) values of coefficient and constraining to negative values produces poorer fit.
- Predicted PGA \( (SA'(0)) \) from response spectrum set of records considerably smaller than those, \( SA(0) \), from the complete PGA set of records. Thus scale \( SA'(T) \) by ratio \( SA(0)/SA'(0) \).
- Standard error has a magnitude dependent intra-event component and a magnitude independent inter-event component.
- Note lack of data for large magnitude subduction zone earthquakes and large magnitude near source data for crustal earthquakes.
5. Summary of published attenuation relations for spectral ordinates

- Do not give coefficients, only predictions.

5.85 Monguilner et al. (2000b)

- Ground motion model is:
  \[
  \log S_A(T) = A(\Delta, T) + M + b_1(T) + b_2(T)M + b_3(T)s + b_4(T)v + b_5(TM^2 + \epsilon_p(i)
  \]
  where \( A(\Delta, H, S, T) = A_0(T) \log \Delta(\Delta, H, M) \), \( \Delta = (\Delta^2 + H^2 + S^2)^{1/2} \), \( H \) is focal depth, \( p \) is the confidence level, \( s \) is from site classification (details not given in paper) and \( v \) is component direction (details not given in paper although probably \( v = 0 \) for horizontal direction and \( v = 1 \) for vertical direction).

- Response parameter is pseudo-acceleration for unknown damping level.

- Use same data and weighting method as Monguilner et al. (2000a) (see Section 3.142).

- Find \( A_0(T) \) by regression of the Fourier amplitude spectra of the strong-motion records.

- Estimate fault area, \( S \), using
  \[
  \log S = M_s + 8.13 - 0.6667 \log(\sigma/\mu).
  \]

- Equation only valid for \( M_{\text{min}} \leq M \leq M_{\text{max}} \) where \( M_{\text{min}} = -b_2/(2b_5(T)) \) and \( M_{\text{max}} = -(1 + b_2(T))/(2b_5(T)) \). For \( M < M_{\text{min}} \) use \( M \) for second term and \( M = M_{\text{min}} \) elsewhere. For \( M > M_{\text{max}} \) use \( M = M_{\text{max}} \) everywhere.

- Examine residuals, \( \epsilon(T) = \log S_A(T) - \log S_A'(T) \) where \( S_A'(T) \) is the observed pseudo-acceleration and fit to the normal probability distribution, \( p(\epsilon, T) = \int e^{-\frac{(x-\mu(T))}{\sigma(T)^2}}/(\sigma(T)\sqrt{2\pi}) \), to find \( \mu(T) \) and \( \sigma(T) \). Find that the residuals fit the theoretical probability distribution at the 5\% level using the \( \chi^2 \) and KS\(^2 \) tests.

- Do not give coefficients, only graphs of coefficients.

5.86 Shabestari & Yamazaki (2000)

- Ground motion model is:
  \[
  \log y(T) = b_0(T) + b_1(T)M + b_2(T) - \log r + b_4(T)h + c_i(T)
  \]
  where \( c_i(T) \) is the station coefficient, reflecting the relative site effect for each period, assuming zero mean for all stations.

- Response parameters are acceleration and velocity for 5\% damping.

- Depths between 1 (includes earthquakes with depths reported as 0 km) and 158 km. Exclude earthquakes with focal depths greater than 200 km.

- Exclude records with vectorial composition of PGA less than 0.01 ms\(^{-2}\).

\(^3\) Probably this is Kolmogorov-Smirnov.
5. Summary of published attenuation relations for spectral ordinates

- Exclude data from stations which have recorded less than two records, because the station coefficient could not be determined adequately. Use records from 823 stations.
- Most records from distances between 50 and 300 km.
- Use three-stage iterative partial regression method.
- For $T \geq 5$ s constrain horizontal anelastic coefficient to zero because get positive coefficient.

5.87 Smit et al. (2000)

- See Section 3.145.
- Response parameter is acceleration for 5\% damping.

5.88 Takahashi et al. (2000)

- See Section 3.146.
- Response parameter is pseudo-velocity for 5\% damping.
- For periods $\geq 1$ s long period noise in records leads to reduction in number of records.
- Set $b$ and $e$ to zero at long periods because estimates not statistically significant.
- Find that soft soil site correction terms may be affected by different processing procedures for data from different sources.

5.89 Lussou et al. (2001)

- See Section 3.149.
- Response parameter is pseudo-acceleration for 5\% damping.

5.90 Gülkan & Kalkan (2002)

- See Section 3.152.
- Response parameter is acceleration for 5\% damping.

5.91 Khademi (2002)

- See Section 3.153.
- Response parameter is acceleration for 5\% damping.
5.92 Manic (2002)

- Ground motion model is:
  \[
  \log \text{PSV}(T) = c_1(T) + c_2(T)M + c_3(T) \log(R) + c_4(T)S_A
  \]
  where \( R = (d^2 + d_0^2)^{1/2} \)

- Response parameter is pseudo-velocity for 5% damping.

- Uses two site categories:
  - \( S_A = 0 \) Rock, \( V_{s,30} > 750 \text{ ms}^{-1} \).
  - \( S_A = 1 \) Stiff soil, \( 360 < V_{s,30} \leq 750 \text{ ms}^{-1} \).
    Soft soil sites (\( V_s \leq 360 \text{ ms}^{-1} \)) do not exist in set of records.

- Use technique of Ambraseys et al. (1996) to find the site coefficient \( c_4(T) \), i.e. use residuals from regression without considering site classification.

- Derives separate equations for \( M_s \) and \( M_L \) and for \( d_f \) and \( d_e \).

5.93 Schwarz et al. (2002)

- See Section 3.155.

- Response parameter is acceleration for 5% damping.

5.94 Zonno & Montaldo (2002)

- See Section 3.158.

- Response parameter is pseudo-velocity for 5% damping.

5.95 Alarcón (2003)

- See Section 3.159.

- Response parameter is acceleration for 0, 5 and 10% damping but only report coefficients for 5% damping.

- Derive equations for 84\(^8\) periods but only reports coefficients for 11 periods.

\(^8\) On page 8 of paper it says 88 periods.
5. Summary of published attenuation relations for spectral ordinates


- See Section 3.161.
- Response parameter is pseudo-acceleration for 5% damping.

5.97 Berge-Thierry et al. (2003)

- Ground motion model is:
  \[
  \log_{10} \text{PSA}(f) = a(f)M + b(f)d - \log_{10} d + c_1(f) + c_2(f)
  \]
  where \(c_1(f)\) is for rock sites and \(c_2(f)\) is for alluvium sites.
- Use two site categories based on \(V_s\) where \(V_s\) is the average shear-wave velocity in top 30 m:
  1. Rock, \(V_s > 800 \text{ ms}^{-1}\).
  2. Alluvium, \(300 < V_s < 800 \text{ ms}^{-1}\).
  Note that some uncertainty in site classification due to lack of \(V_s\) values at many stations.
- Response parameter is spectral acceleration for 5%, 7%, 10% and 20% damping.
- Note that not enough data to derive an equation using only French data so had to use European and US data.
- Use only records from earthquakes with focal depth \(\leq 30 \text{ km}\) so as to be consistent with shallow crustal earthquakes in France.
- Predominately use corrected data from Ambraseys et al. (2000).
- Supplement European data with some data from western USA to improve the magnitude and distance distribution.
- Exclude records from Ambraseys et al. (2000) from earthquakes with \(M_s < 4\).
- Exclude records from Ambraseys et al. (2000) with record lengths < 10 s.
- Exclude records from Ambraseys et al. (2000) with poor visual quality.
- Exclude records from Ambraseys et al. (2000) from non-free-field stations or those inside a building on the third floor or higher.
- Exclude records from Ambraseys et al. (2000) from stations with unknown or very soft soil site conditions.
- Processing procedure of records from Ambraseys et al. (2000) is: baseline correct uncorrected record, re-sample record to 0.01 s time-step and bandpass filtered using an elliptical filter with cut-offs of 0.25 and 25 Hz because most instruments were SMA-1s with natural frequency of 25 Hz and damping of 60%. No instrument correction was applied because instrument characteristics are not known.
• Only use US records from earthquakes with \( M > 6 \).

• Use the already corrected records from USGS and CDMG.

• Most data from rock sites is from earthquakes with \( M < 6 \).

• 49.7% of data is from Italy and 16.9% is from USA. All other countries contribute less than 10% each.

• Use hypocentral distance because believe it accounts for both point and extended sources.

• Use uniformly calculated \( M_s \) for data from Ambraseys et al. (2000) and \( M_w \) for data from W. USA, which believe is equivalent for \( M_s \) for \( M_w > 6 \).

• Coefficients only reported for horizontal spectral acceleration for 5% damping.

• Note that recent data, e.g. Chi-Chi, shows saturation of ground motions at short distances but data used only contains a few records at close distances so data not sufficient to model such phenomenon.

• Obtain positive \( b(f) \) coefficients for periods > 1 s which believe is due to low frequency noise and surface waves.

• Believe that small difference between estimated rock and alluvium motions could be due to incorrect site classification at some stations.

• Repeat regression using a randomly selected half of the data. Find very small differences between predicted ground motions using half or complete data set so believe equation is stable.

• Repeat regression excluding data from W. USA and find very small differences between predicted ground motions so believe equation is not influenced by data from W. USA.

• Repeat regression using \( M_w \) rather than \( M_s \) if available and find that predicted ground motions are different but that the predictions using \( M_s \) are higher than those using \( M_w \) so note that equation using \( M_s \) is conservative hence it is useful in a nuclear safety assessment.

• Repeat regression using \( d_r \) rather than \( d_h \) and find that predicted ground motions using \( d_h \) are higher than when \( d_r \) is used because using \( d_h \) places source further from source of energy.

• Plot residuals for 0.03 and 2 s and find not systematic bias in residuals.

5.98 Bommer et al. (2003)

• See Section 3.163.

• Response parameter is acceleration for 5% damping.
5. Summary of published attenuation relations for spectral ordinates


- See Section 3.164.
- Response parameter is pseudo-acceleration for 5% damping.
- To make regression analysis more stable set $c_2$ equal to value from better-constrained regression of uncorrected PGAs.
- Do limited amount of smoothing of regression coefficients to reduce the considerable amount of period-to-period variability in the regression coefficients that caused variability in predicted pseudo-acceleration especially for small distances and large magnitudes.

5.100 Fukushima et al. (2003)

- Ground motion model is:
  \[
  \log \text{Sa}(f) = a(f)M - \log(R + d(f)10^{e(f)M}) + b(f)R + c_1\delta_1 + c_2\delta_2
  \]
- Use two site categories:
  1. Rock sites with $V_s > 800$ ms$^{-1}$. $\delta_1 = 1$ and $\delta_2 = 0$.
  2. Soil sites with $V_s < 800$ ms$^{-1}$. $\delta_2 = 1$ and $\delta_1 = 0$.
- Note that some data (Turkish and Japanese) are associated with liquefaction phenomena and so probably $V_s < 300$ ms$^{-1}$.
- Choose functional form to include effect of amplitude saturation close to source.
- Note that negative Q values obtained in some ground motion estimation equations may be due to the lack of amplitude saturation terms.
- Do not investigate effect of rupture mechanism, directivity, and the hanging wall effect because of a lack of data.
- Use same set of data as Berge-Thierry et al. (2003) but with the addition of records from the 1995 Hyogo-ken Nanbu and 1999 Kocaeli earthquakes, which are used to help constrain the near-source characteristics. In total use 399 records from west Eurasia, 162 from USA, 154 from Hyogo-ken Nanbu and 25 from Kocaeli.
- Remove records from distances greater than the distance at which the predicted PGA is less than 10 cms$^{-2}$ (the average trigger level plus the standard error of observation) as predicted by a previously derived ground motion prediction equation that agrees well with the 1995 Hyogo-ken Nanbu and 1999 Kocaeli earthquakes although they note the process should be iterative.
• Use only records from earthquakes with $M \geq 5.5$ so as to allow the use of a linear magnitude dependence.

• Due to the nonlinear functional form adopt a iterative method to find $d(f)$ and $e(f)$. However, due to the lack of near-source data an accurate value of $e(f)$ cannot be found therefore set $e(f)$ to 0.42, which gives accelerations that agree with the observed peak accelerations in the 1995 Hyogo-ken Nanbu and 1999 Kocaeli earthquakes.

• Bandpass filter records with cut-offs of 0.25 and 25 Hz. Note that due to the presence of many records from analogue instruments the results for frequencies higher than 10 Hz are less reliable than those for lower frequencies.

• Find that for frequencies $> 0.4$ Hz the $b(f)$ coefficient corresponds to positive Q values. For lower frequencies the value of $b(f)$ correspond to negative Q values, which note could be due to instrumental noise or the effect of surface waves that are not well represented by the functional form adopted.

• Note that the small difference between predicted rock and soil motions may be due to intrinsic rock amplification due to rock weathering or inappropriate site classification for some records (e.g. those from the 1999 Kocaeli earthquake, which are all considered to be on soil).

• Plot residuals with respect to regional origin (Hyogo-ken Nanbu, USA, western Eurasian and Kocaeli) and find no clear bias or trend.

• Note that most of the used near-fault records come from strike-slip earthquakes and so the equation may be only should be used for prediction of strike-slip motions.

• Note that the site classification scheme adopted is very basic but lack information for more sophisticated method.
6. GENERAL CHARACTERISTICS OF ATTENUATION RELATIONS FOR SPECTRAL ORDINATES

Table 6.1 gives the general characteristics of published attenuation relations for spectral ordinates. The columns are the same as in Table 4.1 with three extra columns:

- $T_s$ Number of periods for which attenuation equations are derived
- $T_{\text{min}}$ Minimum period for which attenuation equation is derived
- $T_{\text{max}}$ Maximum period for which attenuation equation is derived
### Tab. 6.1: Characteristics of published spectral relations

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$m_b$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_e$</th>
<th>$S$</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Johnson (1973)</td>
<td>W. USA</td>
<td>41</td>
<td>-</td>
<td>23</td>
<td>5.3</td>
<td>7.7</td>
<td>$m_b$</td>
<td>6.3</td>
<td>149.8</td>
<td>$d_e$</td>
<td>1</td>
<td>14</td>
<td>0.055</td>
<td>2.469</td>
<td>M</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Kobayashi &amp; Nagahashi (1977)</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>5.4*</td>
<td>7.9*</td>
<td>U</td>
<td>60*</td>
<td>210*</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>0.1</td>
<td>5</td>
<td>R</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>McGuire (1977)</td>
<td>W. USA</td>
<td>34</td>
<td>-</td>
<td>22</td>
<td>5.3</td>
<td>7.6</td>
<td>$M_L$</td>
<td>14</td>
<td>125</td>
<td>$d_h$</td>
<td>1</td>
<td>16</td>
<td>0.1</td>
<td>8</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac &amp; Trifunac &amp; Anderson (1978a)</td>
<td>W. USA</td>
<td>182</td>
<td>182</td>
<td>46</td>
<td>3.8</td>
<td>7.7</td>
<td>Mostly $M_L$</td>
<td>6*</td>
<td>400*</td>
<td>$d_e$</td>
<td>3</td>
<td>91</td>
<td>0.04</td>
<td>12</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Faccioli (1978)</td>
<td>W. USA, Japan, Papua New Guinea, Mexico &amp; Greece</td>
<td>26*</td>
<td>-</td>
<td>11</td>
<td>5.3</td>
<td>7.8</td>
<td>U</td>
<td>15</td>
<td>342</td>
<td>$d_h$</td>
<td>1</td>
<td>15</td>
<td>0.1</td>
<td>4</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>McGuire (1978)</td>
<td>W. USA</td>
<td>70</td>
<td>-</td>
<td>17+*</td>
<td>4.5*</td>
<td>7.7</td>
<td>U</td>
<td>11*</td>
<td>210*</td>
<td>$d_h$</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac &amp; Trifunac &amp; Anderson (1978b)</td>
<td>W. USA</td>
<td>182</td>
<td>182</td>
<td>46</td>
<td>3.8</td>
<td>7.7</td>
<td>Mostly $M_L$</td>
<td>6*</td>
<td>400*</td>
<td>$d_e$</td>
<td>3</td>
<td>91</td>
<td>0.04</td>
<td>12</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac &amp; Anderson (1978c)</td>
<td>W. USA</td>
<td>182</td>
<td>182</td>
<td>46</td>
<td>3.8</td>
<td>7.7</td>
<td>Mostly $M_L$</td>
<td>6*</td>
<td>400*</td>
<td>$d_e$</td>
<td>3</td>
<td>91</td>
<td>0.04</td>
<td>12</td>
<td>B</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Cornell et al. (1979)</td>
<td>W. USA</td>
<td>70</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td>1</td>
<td>7</td>
<td>0.17</td>
<td>5</td>
<td>C</td>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

*continued on next page*

---

1 They state it is two dimensional response spectrum which assume to be resolved component.

2 Note only valid for $R \geq 20$ km.

3 Note only valid for $R \leq 200$ km.

4 Total earthquake components (does not need to be multiplied by two).

5 Idriss (1978) finds magnitudes to be mixture of $M_L$, $m_b$ and $M_s$.

6 Note only valid for $R \geq 20$ km.

7 Note only valid for $R \leq 200$ km.

8 Note only valid for $R \geq 20$ km.

9 Note only valid for $R \leq 200$ km.
### Tab. 6.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trifunac &amp; Lee (1979)</td>
<td>W. America</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>3</td>
<td>91</td>
<td>0.04</td>
<td>15</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Ohsaki et al. (1980)</td>
<td>Japan</td>
<td>95</td>
<td>-</td>
<td>29+</td>
<td>3.9*</td>
<td>7.2*</td>
<td>U</td>
<td>3*</td>
<td>500*</td>
<td>$d_h$</td>
<td>2</td>
<td>86</td>
<td>0.02</td>
<td>5</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Ohsaki et al. (1980a)</td>
<td>Japan</td>
<td>75</td>
<td>-</td>
<td>U</td>
<td>4</td>
<td>7.4</td>
<td>U</td>
<td>6</td>
<td>500$^*$</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>0.02</td>
<td>5</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac (1980)</td>
<td>W. USA</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>C</td>
<td>91</td>
<td>0.04</td>
<td>7.5</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Devillers &amp; Mohammadioun</td>
<td>W. USA</td>
<td>186</td>
<td>-</td>
<td>U</td>
<td>3.3*</td>
<td>7.7*</td>
<td>U</td>
<td>$\geq$ 10</td>
<td>250$^*$</td>
<td>$d_h$</td>
<td>1</td>
<td>46</td>
<td>0.04</td>
<td>10</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Kobayashi &amp; Midorikawa</td>
<td>Japan</td>
<td>45</td>
<td>-</td>
<td>U</td>
<td>5.1</td>
<td>7.5</td>
<td>U</td>
<td>50</td>
<td>280$^*$</td>
<td>$d_h$</td>
<td>1</td>
<td>U</td>
<td>0.1</td>
<td>5</td>
<td>U</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Joyner &amp; Fumal (1984), Joyner &amp; Fumal (1986) &amp; Joyner &amp; Boore (1988)</td>
<td>W. N. America</td>
<td>-</td>
<td>U</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w(M_L)$</td>
<td>U</td>
<td>U</td>
<td>$d_f$</td>
<td>C</td>
<td>12</td>
<td>0.1</td>
<td>4</td>
<td>L</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Kawashima et al. (1984)</td>
<td>Japan</td>
<td>197</td>
<td>-</td>
<td>90</td>
<td>5.0</td>
<td>U</td>
<td>$M_{\text{JMA}}$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>3</td>
<td>10</td>
<td>0.1</td>
<td>3</td>
<td>R</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Kawashima et al. (1985)</td>
<td>Japan</td>
<td>-</td>
<td>119</td>
<td>90*</td>
<td>5.0*</td>
<td>7.5*</td>
<td>$M_{\text{JMA}}$</td>
<td>5*</td>
<td>500$^*$</td>
<td>$d_e$</td>
<td>3</td>
<td>10</td>
<td>0.1</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac &amp; Lee (1985)</td>
<td>W. N. America</td>
<td>438</td>
<td>438</td>
<td>104</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$d_h$</td>
<td>3,</td>
<td>91</td>
<td>0.04</td>
<td>15</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Kamiyama &amp; Yanagisawa (1986)</td>
<td>Japan</td>
<td>228</td>
<td>-</td>
<td>69</td>
<td>4.5</td>
<td>7.9</td>
<td>$M_{\text{JMA}}$</td>
<td>3</td>
<td>323</td>
<td>$d_e$</td>
<td>I</td>
<td>45</td>
<td>0.1</td>
<td>10</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>C.B. Crouse (1978)</td>
<td>S. California</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_s$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>1</td>
<td>10</td>
<td>0.05</td>
<td>6</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Lee (1987) &amp; Lee (1993)</td>
<td>Mostly California</td>
<td>494</td>
<td>494</td>
<td>106</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>3</td>
<td>91</td>
<td>0.04</td>
<td>15</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

Tab. 6.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>(M_{\text{min}})</th>
<th>(M_{\text{max}})</th>
<th>(M_w)</th>
<th>(d_{\text{min}})</th>
<th>(d_{\text{max}})</th>
<th>(d_s)</th>
<th>(S)</th>
<th>(T_s)</th>
<th>(T_{\text{min}})</th>
<th>(T_{\text{max}})</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>K. Sadigh (1987)</td>
<td>W. USA + others</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>(M_w)</td>
<td>U</td>
<td>U</td>
<td>(d_s)</td>
<td>2</td>
<td>7</td>
<td>0.1</td>
<td>4</td>
<td>B</td>
<td>U</td>
<td>A (S, R)</td>
</tr>
<tr>
<td>Annaka &amp; Nozawa (1988)</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>45</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>(d_s)</td>
<td>1</td>
<td>U</td>
<td>0.04*</td>
<td>4*</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Crouse et al. (1988)</td>
<td>N. Honshu</td>
<td>64</td>
<td>-</td>
<td>U</td>
<td>5.1</td>
<td>8.2</td>
<td>(M_w, M_s &amp; M_{\text{JMA}})</td>
<td>for (M &lt; 7.5)</td>
<td>42</td>
<td>407</td>
<td>(d_E, d_h) for (M &lt; 7.5)</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>4</td>
<td>B</td>
<td>1</td>
</tr>
<tr>
<td>Petrovski &amp; Marcellini (1988)</td>
<td>Europe</td>
<td>120</td>
<td>120</td>
<td>46</td>
<td>3</td>
<td>7</td>
<td>U</td>
<td>8</td>
<td>200</td>
<td>(d_s)</td>
<td>1</td>
<td>26</td>
<td>0.02</td>
<td>5</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Yokota et al. (1988)</td>
<td>Tokyo</td>
<td>154</td>
<td>24</td>
<td>75 (U)</td>
<td>4.0</td>
<td>6.1</td>
<td>(M_{\text{JMA}})</td>
<td>59 (60)</td>
<td>206 (100)</td>
<td>(d_h)</td>
<td>1</td>
<td>U</td>
<td>0.1</td>
<td>10</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Youngs et al. (1988)</td>
<td>Worldwide subduction zones</td>
<td>20</td>
<td>+</td>
<td>-</td>
<td>16* (60)</td>
<td>5.6* (5)</td>
<td>8.1* (8.1, 8.2)(^\text{11})</td>
<td>(M_w, M_s)</td>
<td>U</td>
<td>U</td>
<td>(d_E, d_h) for (M_w \lesssim 7.5)</td>
<td>1</td>
<td>15</td>
<td>0.07</td>
<td>4</td>
<td>G</td>
<td>1W</td>
</tr>
<tr>
<td>Kamiyama (1989)</td>
<td>Japan</td>
<td>228</td>
<td>-</td>
<td>U</td>
<td>4.1</td>
<td>7.9</td>
<td>(M_{\text{JMA}})</td>
<td>3</td>
<td>350</td>
<td>(d_e)</td>
<td>1</td>
<td>U</td>
<td>0.05*</td>
<td>10*</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Trifunac &amp; Lee (1989)</td>
<td>Mostly California</td>
<td>438</td>
<td>438</td>
<td>104</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>(d_e)</td>
<td>C</td>
<td>12</td>
<td>0.04</td>
<td>14</td>
<td>B</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Atkinson (1990)</td>
<td>E. N. America + 10 others</td>
<td>92+10(^\text{12})</td>
<td>-</td>
<td>8+3</td>
<td>3.60 (5.16)</td>
<td>6.00 (6.84)</td>
<td>(M_w)</td>
<td>8 (8)</td>
<td>1215</td>
<td>(d_h)</td>
<td>1</td>
<td>4</td>
<td>0.1</td>
<td>1</td>
<td>B</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Campbell (1990)</td>
<td>Unknown</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>(M_L) for (M &lt; 6), (M_s) for (M \geq 6)</td>
<td>U</td>
<td>U</td>
<td>(d_s)</td>
<td>1</td>
<td>15</td>
<td>0.04</td>
<td>4</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Dahle et al. (1990b) &amp; Dahle et al. (1990a)</td>
<td>Worldwide &amp; intraplate regions</td>
<td>87</td>
<td>-</td>
<td>56</td>
<td>2.9</td>
<td>7.8</td>
<td>(M_w, M_s, M_{\text{CL}})</td>
<td>6</td>
<td>1300</td>
<td>(d_h)</td>
<td>1</td>
<td>89</td>
<td>0.025</td>
<td>4</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Tamura et al. (1990)</td>
<td>Japan</td>
<td>97</td>
<td>-</td>
<td>7</td>
<td>7.1</td>
<td>7.9</td>
<td>(M_{\text{JMA}})</td>
<td>U</td>
<td>U</td>
<td>(d_e)</td>
<td>3</td>
<td>13</td>
<td>2</td>
<td>20</td>
<td>L</td>
<td>1, 0</td>
<td>A</td>
</tr>
</tbody>
</table>

\(^{11}\) Reported in Joyner & Boore (1988).

\(^{12}\) Consider equations valid for \(M_w \leq 8\)

\(^{13}\) Total earthquake components (does not need to be multiplied by two). 79+10 records for 0.1s equation.
### Tab. 6.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>(M_{\text{min}})</th>
<th>(M_{\text{max}})</th>
<th>Scale</th>
<th>(d_{\text{min}})</th>
<th>(d_{\text{max}})</th>
<th>(d_{\text{scale}})</th>
<th>S</th>
<th>T_s</th>
<th>T_{\text{min}}</th>
<th>T_{\text{max}}</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tsai et al. (1990)</td>
<td>Worldwide</td>
<td>&lt;88</td>
<td>-</td>
<td>&lt;51</td>
<td>4.9*</td>
<td>7.4</td>
<td>(M_w)</td>
<td>3*</td>
<td>150*</td>
<td>(d_r)</td>
<td>1</td>
<td>14</td>
<td>0.07</td>
<td>1</td>
<td>U</td>
<td>M</td>
<td>T(S,O)</td>
</tr>
<tr>
<td>Crouse (1991)</td>
<td>Worldwide subduction zones</td>
<td>235</td>
<td>-</td>
<td>U</td>
<td>5.1</td>
<td>8.2</td>
<td>(M_w) ((M_s), (M_{3MA}))</td>
<td>&gt;8</td>
<td>&gt;469</td>
<td>(d_E), (d_h) for (M &lt; 7.5)</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>4</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Dahle et al. (1991)</td>
<td>Intraplate (particularly Norway)</td>
<td>395+31</td>
<td>-</td>
<td>136+11</td>
<td>2.4*(4.1)</td>
<td>5.2*(6.9)</td>
<td>(M_s) ((M_L, M_{CL}))</td>
<td>20*</td>
<td>1200*</td>
<td>(d_h)</td>
<td>1</td>
<td>4.1</td>
<td>0.1</td>
<td>1</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>I.M. Idriss (1991)</td>
<td>Unknown</td>
<td>572</td>
<td>-</td>
<td>30*</td>
<td>4.6</td>
<td>7.4</td>
<td>(M_s) for (M &lt; 6), (M_{CL}) for (M \geq 6)</td>
<td>1</td>
<td>100</td>
<td>(d_r), (d_h) for (M &lt; 6)</td>
<td>1</td>
<td>23</td>
<td>0.03</td>
<td>5</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Mohammadioun (1991)</td>
<td>Italy</td>
<td>144</td>
<td>-</td>
<td>46</td>
<td>3.0</td>
<td>6.5</td>
<td>U</td>
<td>6</td>
<td>186</td>
<td>(d_h), 1 eq. with (d_r)</td>
<td>1</td>
<td>81</td>
<td>0.013</td>
<td>1.95</td>
<td>B</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Niazi &amp; Bozorgnia (1992)</td>
<td>SMART-1 array, Taiwan</td>
<td>236</td>
<td>234</td>
<td>12</td>
<td>3.6</td>
<td>7.8</td>
<td>(M_L) ((M_D)) for (M_L &lt; 6.6), else (M_s)</td>
<td>3.1*</td>
<td>119.7*</td>
<td>(d_h)</td>
<td>1</td>
<td>23</td>
<td>0.03</td>
<td>10</td>
<td>M</td>
<td>2W</td>
<td>A</td>
</tr>
<tr>
<td>Benito et al. (1992)</td>
<td>Campano Lucano</td>
<td>84</td>
<td>-</td>
<td>U</td>
<td>4.7</td>
<td>6.5</td>
<td>(M_L)</td>
<td>3.4*</td>
<td>142*</td>
<td>(d_h)</td>
<td>3</td>
<td>15</td>
<td>0.04</td>
<td>10</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Tento et al. (1992)</td>
<td>Italy</td>
<td>137</td>
<td>-</td>
<td>40</td>
<td>4</td>
<td>6.6</td>
<td>(M_L)</td>
<td>3.2</td>
<td>170</td>
<td>(d_f) for (M_L \geq 5.7), (d_e) otherwise</td>
<td>1</td>
<td>12</td>
<td>0.04</td>
<td>2.75</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Boore et al. (1993) &amp; Boore et al. (1997)</td>
<td>W. N. America</td>
<td>112</td>
<td>-</td>
<td>14</td>
<td>5.30</td>
<td>7.70</td>
<td>(M_w)</td>
<td>0</td>
<td>109</td>
<td>(d_f)</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L, G</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Caillot &amp; Bard (1993)</td>
<td>Italy</td>
<td>83</td>
<td>-</td>
<td>(\leq 40)</td>
<td>3.2</td>
<td>6.8</td>
<td>(M_s) if (M_L \geq 6.0) (M_s) &amp; (M_L \geq 6.0)</td>
<td>10</td>
<td>63</td>
<td>(d_h)</td>
<td>2</td>
<td>25</td>
<td>0.05</td>
<td>1.98</td>
<td>U</td>
<td>2, A</td>
<td>1W</td>
</tr>
</tbody>
</table>

---

14 Consider more than 4 natural periods but results not reported.  
15 Reported in Idriss (1993).  
16 Distance to centre of array
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>S</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell (1993)</td>
<td>Worldwide</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>(^{17})</td>
<td>U</td>
<td>$M_L$</td>
<td>U</td>
<td>U</td>
<td>(^{18})</td>
<td>2</td>
<td>15</td>
<td>0.04</td>
<td>4</td>
<td>M</td>
<td>O</td>
<td>A (T,S)</td>
</tr>
<tr>
<td>Sadigh et al. (1993) &amp; Sadigh et al. (1997)</td>
<td>California with 4 foreign</td>
<td>960+4</td>
<td>U</td>
<td>119+2</td>
<td>3.8 (6.8)</td>
<td>7.4 (7.4)</td>
<td>$M_{\text{w}}$</td>
<td>0.1</td>
<td>(3)</td>
<td>305</td>
<td>$d_r$</td>
<td>for $M &lt; 6.0$ and $M_s$ otherwise</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sun &amp; Peng (1993)</td>
<td>W. USA with 1 foreign</td>
<td>150+1</td>
<td>-</td>
<td>42+1</td>
<td>4.1</td>
<td>7.7</td>
<td>$M_L$ for $M &lt; 6$, else $M_s$</td>
<td>2*</td>
<td>150*</td>
<td>$d_c$</td>
<td>C</td>
<td>U</td>
<td>0.04</td>
<td>10</td>
<td>R</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Boore et al. (1994a) &amp; Boore et al. (1997)</td>
<td>W. N. America (70)</td>
<td>112</td>
<td>-</td>
<td>14 (9)</td>
<td>5.30</td>
<td>7.70 (7.40)</td>
<td>$M_{\text{w}}$</td>
<td>0</td>
<td>109</td>
<td>$d_f$</td>
<td>C</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>1M</td>
<td>A (R,S)</td>
</tr>
<tr>
<td>Climent et al. (1994)</td>
<td>Central America &amp; Mexico</td>
<td>280</td>
<td>U</td>
<td>72</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>0.05*</td>
<td>$\geq 2$</td>
<td>U</td>
<td>U</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Fukushima et al. (1994) &amp; Fukushima et al. (1995)</td>
<td>3 vertical arrays in Japan</td>
<td>285</td>
<td>284</td>
<td>42</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_{\text{JMA}}$</td>
<td>60*</td>
<td>400*</td>
<td>$d_h$</td>
<td>I</td>
<td>U</td>
<td>0.05</td>
<td>2</td>
<td>B</td>
<td>1,2</td>
<td>A</td>
</tr>
<tr>
<td>Lawson &amp; Krawinkler (1994)</td>
<td>W. USA 250+</td>
<td>250</td>
<td>-</td>
<td>11</td>
<td>5.8</td>
<td>7.4</td>
<td>$M_{\text{w}}$</td>
<td>U</td>
<td>100</td>
<td>$d_f$</td>
<td>3</td>
<td>38</td>
<td>0.1</td>
<td>4</td>
<td>U</td>
<td>1M</td>
<td>A</td>
</tr>
<tr>
<td>Lee &amp; Manić (1994) &amp; Lee (1995)</td>
<td>Former Yugoslavia 313</td>
<td>313</td>
<td>313</td>
<td>183</td>
<td>3.75</td>
<td>7.0</td>
<td>U</td>
<td>4</td>
<td>250</td>
<td>$d_v$</td>
<td>6</td>
<td>12</td>
<td>0.04</td>
<td>2</td>
<td>U</td>
<td>2R</td>
<td>A</td>
</tr>
</tbody>
</table>

\(^{17}\) Considers equation valid for $M \geq 4.7$.
\(^{18}\) Considers equation valid for $d \leq 300\,\text{km}$.
\(^{19}\) Equations stated to be for distances up to 100\,km
\(^{20}\) Minimum period for vertical equations is 0.04\,s.
\(^{21}\) Maximum period for vertical equations is 3\,s.
\(^{22}\) Coefficients given in Boore et al. (1994b).
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_{\text{scale}}$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_{\text{scale}}$</th>
<th>$S$</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammadioun (1994a)</td>
<td>California</td>
<td>108$^3$</td>
<td>56</td>
<td>23</td>
<td>5.3</td>
<td>7.7</td>
<td>$M_L$</td>
<td>3</td>
<td>136</td>
<td>Often $d_r$, $d_h$ in far field</td>
<td>1</td>
<td>96</td>
<td>0.013</td>
<td>5</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Mohammadioun (1994b)</td>
<td>W. USA</td>
<td>530$^4$</td>
<td>≈ 265</td>
<td>U</td>
<td>U</td>
<td>U</td>
<td>$M_L$</td>
<td>1</td>
<td>250</td>
<td>$d_r$, $d_E$ if more appropriate, $d_h$ in far field</td>
<td>1</td>
<td>96</td>
<td>0.013</td>
<td>5</td>
<td>B</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Musson et al. (1994)</td>
<td>UK + 28*</td>
<td>88$^<em>$+$28^{</em>}$</td>
<td>15+16</td>
<td>3 (3.7)</td>
<td>4.1 (6.4)</td>
<td>$M_L$</td>
<td>70$^*$</td>
<td>&gt;477.4$d_h$ ($&gt;1.3$)</td>
<td>1</td>
<td>4</td>
<td>0.1</td>
<td>1</td>
<td>U$^{*}$</td>
<td>O</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theodulidis &amp; Papazachos (1994)</td>
<td>Greece+16 foreign</td>
<td>105+16$^{??}$</td>
<td>36+4</td>
<td>4.5 (7.2)</td>
<td>7.0 (7.5)</td>
<td>$M_s$, $M_w$, $M_{\text{JMA}}$</td>
<td>1 (48)</td>
<td>128 $d_e$</td>
<td>2</td>
<td>73</td>
<td>0.05</td>
<td>5</td>
<td>B</td>
<td>O</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dahle et al. (1995)</td>
<td>Cen. America</td>
<td>280</td>
<td>-</td>
<td>72</td>
<td>3*</td>
<td>8*</td>
<td>$M_L$ ($M_s$, $m_b$, $M_D$)</td>
<td>6*</td>
<td>490$^*$ $d_h$</td>
<td>2</td>
<td>8</td>
<td>0.025</td>
<td>4</td>
<td>L</td>
<td>1B</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Lee &amp; Trifunac (1995)</td>
<td>W. N. America</td>
<td>1926</td>
<td>1926</td>
<td>297</td>
<td>1.7</td>
<td>7.7</td>
<td>Usually $M_L$ for $M \leq 6.5$, and $M_s$ for $M &gt; 6.5$</td>
<td>2</td>
<td>200$^*$ $d_h$</td>
<td>9, 3</td>
<td>91</td>
<td>0.04</td>
<td>15</td>
<td>U</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Ambraseys et al. (1996)</td>
<td>Europe &amp; Mid. East</td>
<td>422</td>
<td>-</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$ (unspecified)</td>
<td>0</td>
<td>260 $d_f$</td>
<td>for $M &gt; 6.0$, $d_e$ otherwise</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Ambraseys &amp; Simpson (1996)</td>
<td>Europe &amp; Mid. East</td>
<td>-</td>
<td>417</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$ (unspecified)</td>
<td>0</td>
<td>260 $d_f$</td>
<td>for $M &gt; 6.0$, $d_e$ otherwise</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Bommer et al. (1996)</td>
<td>El Salvador &amp; Nicaragua</td>
<td>36</td>
<td>-</td>
<td>20</td>
<td>3.7</td>
<td>7.0</td>
<td>$M_s$</td>
<td>62</td>
<td>260</td>
<td>$d_h$</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>U</td>
<td>A</td>
</tr>
</tbody>
</table>

continued on next page

23 Total number, does not need to be multiplied by two.
24 Total number, does not need to be multiplied by two.
25 There are 116 records in total.
26 Free (1996) believes it is largest horizontal component.
27 Total number of components does not need to be multiplied by two.
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>(M_{\text{min}})</th>
<th>(M_{\text{max}})</th>
<th>(M_{\text{scale}})</th>
<th>(d_{\text{min}})</th>
<th>(d_{\text{max}})</th>
<th>(d_{\text{scale}})</th>
<th>(S)</th>
<th>(T_s)</th>
<th>(T_{\text{min}})</th>
<th>(T_{\text{max}})</th>
<th>(C)</th>
<th>(R)</th>
<th>(M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crouse &amp; McGuire (1996)</td>
<td>Cen. &amp; S. California</td>
<td>238</td>
<td>-</td>
<td>16</td>
<td>6.0</td>
<td>7.7</td>
<td>0.1</td>
<td>211</td>
<td>(d_r)</td>
<td>2</td>
<td>14</td>
<td>0.04</td>
<td>14</td>
<td>6</td>
<td>1W</td>
<td>R,S</td>
<td></td>
</tr>
<tr>
<td>Free (1996) &amp; Free et al. (1998)</td>
<td>Stable continental regions</td>
<td>399–410</td>
<td>347–477</td>
<td>H: 137–138, V: 126–132</td>
<td>1.5</td>
<td>6.8</td>
<td>(M_w)</td>
<td>0</td>
<td>820</td>
<td>(d_f) for some, (d_e) for most</td>
<td>2</td>
<td>52</td>
<td>0.04</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Molas &amp; Yamazaki (1996)</td>
<td>Japan</td>
<td>2166</td>
<td>-</td>
<td>387</td>
<td>4.1</td>
<td>7.8</td>
<td>(M_{3MA})</td>
<td>8*</td>
<td>1000*</td>
<td>(d_r)</td>
<td>I</td>
<td>12</td>
<td>0.1</td>
<td>4</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Ohno et al. (1996)</td>
<td>California</td>
<td>248</td>
<td>-</td>
<td>17</td>
<td>5.0</td>
<td>7.5</td>
<td>(M_w) ((M_L))</td>
<td>7.2</td>
<td>99.6</td>
<td>(d_r) for (M &gt; 5.3), (d_h) otherwise</td>
<td>2</td>
<td>U</td>
<td>0.02</td>
<td>2</td>
<td>B</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Sabetta &amp; Pugliese (1996)</td>
<td>Italy</td>
<td>95</td>
<td>95</td>
<td>17</td>
<td>4.6</td>
<td>6.8</td>
<td>(M_{w})</td>
<td>if (M_L &lt; 1.5)</td>
<td>179.180*</td>
<td>Both (d_f) &amp; (d_e)</td>
<td>3</td>
<td>14</td>
<td>0.04</td>
<td>4</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Spudich et al. (1996) &amp; Spudich et al. (1997)</td>
<td>Worldwide extensional regimes</td>
<td>99–118</td>
<td>-</td>
<td>27–29</td>
<td>5.10</td>
<td>6.90</td>
<td>(M_w)</td>
<td>0</td>
<td>102.1</td>
<td>(d_f)</td>
<td>2</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>G</td>
<td>2M</td>
<td>NS</td>
</tr>
<tr>
<td>Abrahamson &amp; Silva (1997)</td>
<td>California with some others</td>
<td>(\le 655^*)</td>
<td>(\le 650^*)</td>
<td>(\le 58)</td>
<td>4.4</td>
<td>7.4</td>
<td>U</td>
<td>0.1</td>
<td>220*</td>
<td>(d_e)</td>
<td>2</td>
<td>28</td>
<td>0.01</td>
<td>5</td>
<td>G</td>
<td>1M</td>
<td>A (S,O,T)</td>
</tr>
<tr>
<td>Atkinson (1997)</td>
<td>Cascadia with some foreign</td>
<td>U</td>
<td></td>
<td>11+9</td>
<td>4.1</td>
<td>6.7(8.2)</td>
<td>(M_w)</td>
<td>20*</td>
<td>580*</td>
<td>(d_e) for some, (d_h) for small ones</td>
<td>2</td>
<td>12</td>
<td>0.1</td>
<td>2</td>
<td>B</td>
<td>2</td>
<td>A</td>
</tr>
</tbody>
</table>

continued on next page

28 State equations should not be used for distances \(> 100 \text{ km}\)
<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_s$ scale</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d$ scale</th>
<th>$S$</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell (1997), Campbell (2000) &amp; Campbell (2001)</td>
<td>Worldwide</td>
<td>266</td>
<td>29</td>
<td>173</td>
<td>4.7</td>
<td>8.1</td>
<td>$M_s$ for $M_s \geq 6$, $M_L$ for $M_s &lt; 6$</td>
<td>3</td>
<td>50</td>
<td>$d_s$</td>
<td>3</td>
<td>13</td>
<td>0.05</td>
<td>4</td>
<td>G</td>
<td>IW</td>
<td>A (S,R,N)</td>
</tr>
<tr>
<td>Schmidt et al. (1997)</td>
<td>Costa Rica</td>
<td>200</td>
<td>-</td>
<td>57</td>
<td>3.3</td>
<td>7.6</td>
<td>$M_w$ ($M_s, m_b, M_D$)</td>
<td>6.1</td>
<td>1821</td>
<td>$d_h$</td>
<td>3</td>
<td>7</td>
<td>$0.025$</td>
<td>4</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Youngs et al. (1997)</td>
<td>Worldwide</td>
<td>≤476</td>
<td>-</td>
<td>≤164</td>
<td>5.0</td>
<td>8.2</td>
<td>$M_w$ ($M_s, m_b$)</td>
<td>8.5</td>
<td>550.9</td>
<td>$d_c$, $d_h$ for some</td>
<td>2</td>
<td>11</td>
<td>$0.075$</td>
<td>3</td>
<td>G</td>
<td>1M</td>
<td>NT (N,T)</td>
</tr>
<tr>
<td>Bommer et al. (1998)</td>
<td>Europe &amp; Mid. East</td>
<td>121–183</td>
<td>-</td>
<td>34–43</td>
<td>5.5</td>
<td>7.9</td>
<td>$M_s$</td>
<td>3</td>
<td>260</td>
<td>for $d_c$, $d_h$</td>
<td>3</td>
<td>66</td>
<td>0.04</td>
<td>3</td>
<td>L</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td>Perea &amp; Sordo (1998)</td>
<td>Urban area of Puebla, Mexico</td>
<td>10</td>
<td>-</td>
<td>8</td>
<td>5.8</td>
<td>8.1</td>
<td>$m_b$ for $M &lt; 6$, $M_s$ otherwise</td>
<td>274</td>
<td>663</td>
<td>$d_e$</td>
<td>1</td>
<td>195</td>
<td>$0.01$</td>
<td>3.5</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Shabestari &amp; Yamazaki (1998)</td>
<td>Japan</td>
<td>3990</td>
<td>-</td>
<td>1020</td>
<td>U</td>
<td>8.1</td>
<td>$M_{\text{JMA}}$</td>
<td>U</td>
<td>U</td>
<td>$d_e$</td>
<td>35</td>
<td>0.04</td>
<td>10</td>
<td>L</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Chapman (1999)</td>
<td>W. N. America</td>
<td>304</td>
<td>-</td>
<td>23</td>
<td>5.0</td>
<td>7.7</td>
<td>$M_w$</td>
<td>0.1</td>
<td>189.4</td>
<td>$d_f$</td>
<td>3</td>
<td>24</td>
<td>0.1</td>
<td>2</td>
<td>G</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Spudich et al. (1999)</td>
<td>Worldwide extensional regimes</td>
<td>105–132</td>
<td>-</td>
<td>≤38</td>
<td>5.1</td>
<td>7.2</td>
<td>$M_w$</td>
<td>0</td>
<td>99.4</td>
<td>$d_f$</td>
<td>2</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>G</td>
<td>1M</td>
<td>NS</td>
</tr>
<tr>
<td>Ambraseys &amp; Douglas (2000), Doo-</td>
<td>Worldwide</td>
<td>186</td>
<td>183</td>
<td>44</td>
<td>5.83</td>
<td>7.8</td>
<td>$M_s$</td>
<td>0</td>
<td>15</td>
<td>$d_f$</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>gles (2001b) &amp; Ambraseys &amp;</td>
<td></td>
</tr>
<tr>
<td>Bozorgnia et al. (2000)</td>
<td>Worldwide</td>
<td>1308</td>
<td>1308</td>
<td>33</td>
<td>U</td>
<td>U</td>
<td>$M_w$</td>
<td>U</td>
<td>$\leq 60$</td>
<td>$d_s$</td>
<td>4</td>
<td>U</td>
<td>$0.05$</td>
<td>4</td>
<td>G</td>
<td>U</td>
<td>A (R,S,T)</td>
</tr>
</tbody>
</table>

29 Typographic error in Table 3 of Campbell (1997) does not match number of recordings in Table 4
30 Typographical error in Figure 3b) of Perea & Sordo (1998) because it does not match their Table 1.
Tab. 6.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{\text{min}}$</th>
<th>$M_{\text{max}}$</th>
<th>$M_w$</th>
<th>$d_{\text{min}}$</th>
<th>$d_{\text{max}}$</th>
<th>$d_s$</th>
<th>$S$</th>
<th>$T_s$</th>
<th>$T_{\text{min}}$</th>
<th>$T_{\text{max}}$</th>
<th>$C$</th>
<th>$R$</th>
<th>$M$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campbell &amp; Bozorgnia</td>
<td>Worldwide</td>
<td>275–</td>
<td>274–</td>
<td>≤ 36</td>
<td>≥ 4.7</td>
<td>≤ 7.7</td>
<td>$M_w$</td>
<td>≥ 1*</td>
<td>≤ 60*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chou &amp; Uang</td>
<td>California</td>
<td>273</td>
<td>-</td>
<td>15</td>
<td>5.6</td>
<td>7.4</td>
<td>$M_w$</td>
<td>0*</td>
<td>120 $d_f$</td>
<td>3</td>
<td>25</td>
<td>0.1</td>
<td>3</td>
<td>2</td>
<td>G</td>
<td>2M</td>
<td>A</td>
</tr>
<tr>
<td>Kawano et al.</td>
<td>Japan</td>
<td>107</td>
<td>107</td>
<td>44</td>
<td>5.5</td>
<td>7.0</td>
<td>$M_{\text{JMA}}$</td>
<td>27</td>
<td>202 $d_q$</td>
<td>1, C</td>
<td>U</td>
<td>0.02</td>
<td>5</td>
<td>U</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Kobayashi et al.</td>
<td>Japan</td>
<td>U</td>
<td>-</td>
<td>U</td>
<td>5.0</td>
<td>7.8</td>
<td>$M_w$</td>
<td>0.9*</td>
<td>400* $U$</td>
<td>4</td>
<td>17</td>
<td>0.1</td>
<td>5</td>
<td>B</td>
<td>1M</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>McCvery et al.</td>
<td>NZ with 66</td>
<td>≤ 224</td>
<td>-</td>
<td>(51+17)</td>
<td>(7.23(7.41))$M_w$</td>
<td>(0.1)</td>
<td>(573)</td>
<td>$d_r$ for some, $d_c$ for most</td>
<td>4</td>
<td>U</td>
<td>0.01*</td>
<td>4*</td>
<td>U</td>
<td>O</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monguilner et al.</td>
<td>W. Argentina</td>
<td>54</td>
<td>54</td>
<td>10</td>
<td>4.3</td>
<td>7.4</td>
<td>$M_s$ if $M_L &gt; 6$, $M_L$ otherwise</td>
<td>11</td>
<td>350 $d_h$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shabestari &amp; Yamazaki</td>
<td>Japan</td>
<td>6017</td>
<td>-</td>
<td>94</td>
<td>5.0</td>
<td>6.6</td>
<td>$M_{\text{JMA}}$</td>
<td>7*</td>
<td>950* $d_r$</td>
<td>1</td>
<td>35</td>
<td>0.04</td>
<td>10</td>
<td>L</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Smit et al.</td>
<td>Caucasus</td>
<td>84</td>
<td>-</td>
<td>26</td>
<td>4.0</td>
<td>7.1</td>
<td>$M_s$</td>
<td>4</td>
<td>230 $d_h$</td>
<td>1</td>
<td>22</td>
<td>0.05</td>
<td>1</td>
<td>L</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Takahashi et al.</td>
<td>Japan+166</td>
<td>≤1332</td>
<td>-</td>
<td>U+7*</td>
<td>5*</td>
<td>8.3*</td>
<td>$M_w$</td>
<td>1*</td>
<td>300* $d_r$, $d_h$ for (0.1*) (100*) some $d_h$</td>
<td>4</td>
<td>20</td>
<td>0.05</td>
<td>5</td>
<td>G</td>
<td>O</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Lussou et al.</td>
<td>Japan</td>
<td>3011</td>
<td>3011</td>
<td>102</td>
<td>3.7</td>
<td>6.3</td>
<td>$M_{\text{JMA}}$</td>
<td>4*</td>
<td>600* $d_h$</td>
<td>4</td>
<td>63</td>
<td>0.02</td>
<td>10</td>
<td>B</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Gulkan &amp; Kalkan</td>
<td>Turkey</td>
<td>931</td>
<td>-</td>
<td>19</td>
<td>4.5</td>
<td>7.4</td>
<td>$M_w$</td>
<td>1.20</td>
<td>150 $d_f$, $d_c$</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Khademi</td>
<td>Iran</td>
<td>160</td>
<td>160</td>
<td>28*</td>
<td>3.4*</td>
<td>7.4</td>
<td>$M_w$</td>
<td>(m_b for $M_s &lt; 5$ and $M_s$ otherwise)</td>
<td>0.1*</td>
<td>180* $d_f$, $d_c$ for $M &lt; 5.9$</td>
<td>2</td>
<td>13</td>
<td>0.05</td>
<td>4</td>
<td>L</td>
<td>O</td>
<td>A</td>
</tr>
<tr>
<td>Manic (2002)</td>
<td>Former Yu-</td>
<td>153</td>
<td>77</td>
<td>19</td>
<td>4.0</td>
<td>6.9</td>
<td>$M_s$</td>
<td>0</td>
<td>110 $d_f$ and $d_c$</td>
<td>2</td>
<td>14</td>
<td>0.04</td>
<td>4</td>
<td>B</td>
<td>1</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td></td>
<td>goslavia</td>
<td></td>
<td></td>
<td></td>
<td>and 4.2</td>
<td>and 7.0</td>
<td>$M_L$</td>
<td>and 0</td>
<td>and 0 $d_f$ and $d_c$</td>
<td>150</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31 This is total number of horizontal components used. They come from 47 triaxial records.
32 This is total number of components. Does not need to be multiplied by two.
### Tab. 6.1: continued

<table>
<thead>
<tr>
<th>Reference</th>
<th>Area</th>
<th>H</th>
<th>V</th>
<th>E</th>
<th>$M_{min}$</th>
<th>$M_{max}$</th>
<th>$M_{scale}$</th>
<th>$d_{min}$</th>
<th>$d_{max}$</th>
<th>$d_{scale}$</th>
<th>$S$</th>
<th>$T_s$</th>
<th>$T_{min}$</th>
<th>$T_{max}$</th>
<th>C</th>
<th>R</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwarz et al. (2002)</td>
<td>N.W. Turkey</td>
<td>683</td>
<td>683</td>
<td>U</td>
<td>0.9*</td>
<td>7.2</td>
<td>$M_L$</td>
<td>0*</td>
<td>250*</td>
<td>$d_e$</td>
<td>3</td>
<td>11</td>
<td>0.01</td>
<td>2</td>
<td>U</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Zonno &amp; Montaldo (2002)</td>
<td>Umbria-Marche</td>
<td>161</td>
<td>-</td>
<td>15</td>
<td>4.5</td>
<td>5.9</td>
<td>$M_L$</td>
<td>2*</td>
<td>100*</td>
<td>$d_e$</td>
<td>2</td>
<td>14</td>
<td>0.04</td>
<td>4</td>
<td>L</td>
<td>2</td>
<td>N, O</td>
</tr>
<tr>
<td>Alarcón (2003)</td>
<td>Colombia</td>
<td>45</td>
<td>47</td>
<td>U</td>
<td>4.0</td>
<td>6.7</td>
<td>$M_s$</td>
<td>49.7</td>
<td>322.4</td>
<td>$d_h$</td>
<td>1</td>
<td>84</td>
<td>0.05</td>
<td>3</td>
<td>U</td>
<td>U</td>
<td>A</td>
</tr>
<tr>
<td>Atkinson &amp; Boore (2003)</td>
<td>Subduction zones</td>
<td>1200</td>
<td>-</td>
<td>43*</td>
<td>5.5</td>
<td>8.3</td>
<td>$M_w$</td>
<td>11*</td>
<td>550*</td>
<td>$d_e$</td>
<td>4</td>
<td>7</td>
<td>0.04</td>
<td>3</td>
<td>C</td>
<td>1M</td>
<td>F, B</td>
</tr>
<tr>
<td>Berge-Thierry et al. (2003)</td>
<td>Europe &amp; Mid. East</td>
<td>802</td>
<td>82</td>
<td>130</td>
<td>4.0 (5.8)</td>
<td>7.9 (7.4)</td>
<td>$M_s$</td>
<td>(for $M_w$ for W. USA)</td>
<td>4</td>
<td>330</td>
<td>$d_h$</td>
<td>2</td>
<td>143</td>
<td>0.03</td>
<td>10</td>
<td>B</td>
<td>2</td>
</tr>
<tr>
<td>Bommer et al. (2003)</td>
<td>Europe &amp; Mid. East</td>
<td>422</td>
<td>-</td>
<td>157</td>
<td>4.0</td>
<td>7.9</td>
<td>$M_s$ (unspecified)</td>
<td>0</td>
<td>260</td>
<td>$d_f$ for $M_s &gt; 6.0$, $d_e$ otherwise</td>
<td>3</td>
<td>46</td>
<td>0.1</td>
<td>2</td>
<td>L</td>
<td>1M</td>
<td>A (S, R, N)</td>
</tr>
<tr>
<td>Campbell &amp; Bozorgnia (2003c),</td>
<td>Worldwide</td>
<td>443</td>
<td>36</td>
<td>439</td>
<td>4.7</td>
<td>7.7</td>
<td>$M_w$</td>
<td>2*</td>
<td>60*</td>
<td>$d_o$</td>
<td>4</td>
<td>14</td>
<td>0.05</td>
<td>4</td>
<td>G</td>
<td>1</td>
<td>A (S &amp; N, R, T)</td>
</tr>
<tr>
<td>Campbell &amp; Bozorgnia (2003a)</td>
<td></td>
</tr>
<tr>
<td>Fukushima et al. (2003)</td>
<td>Mainly west Eurasia+some</td>
<td>396</td>
<td>341</td>
<td>-</td>
<td>40+10</td>
<td>5.5</td>
<td>7.4</td>
<td>$M_w$ ($M_s$)</td>
<td>0.5</td>
<td>235</td>
<td>(for $d_r$ for 2 earthquakes)</td>
<td>2</td>
<td>11</td>
<td>0.03</td>
<td>2</td>
<td>B</td>
<td>2</td>
</tr>
</tbody>
</table>

---

33 Total number of records. Does not need to be multiplied by two.
34 485 records in total but do not state number of vertical records from W. USA.
35 For horizontal corrected records. There are 34 for vertical corrected records.
7. ACKNOWLEDGEMENTS

This study was funded by EPSRC grant no. GR/L87385 and no. GR/52114/01(P) and EC grant no. EVR1-CT-1999-40008; I thank both funding agencies for their support. I thank Prof. N.N. Ambraseys, Dr J.J. Bommer, Dr P.M. Smit, Anna Baba, Julian Garcia-Mayordomo, Marco Pagani, Jorge Prieto-Salazar, Carlos Rodriguez, Tizi Rossetto, Iain Tromans, Juliet Bird, Jonathan Hancock and Fleur Strasser for references and their enthusiasm towards the original two reports. Also I thank Dr A. Dahle for sending me a copy of Dahle et al. (1991), Dr K. W. Campbell for sending me copies of his recent articles and for correcting a number of errors in my presentation of his studies (I am responsible for any remaining errors), Dr G. Costa for giving me a copy of Costa et al. (1998), Dr M. Zaré for sending me a copy of Zaré et al. (1999), Mr C. Ende for sending me a copy of the poster for Schwarz et al. (2002), Miss V. Montaldo for sending me a copy of Zonno & Montaldo (2002), Prof. H. Bungum for giving me copies of Taylor Castillo et al. (1992) and Schmidt et al. (1997) and Dr B. Benito for sending me copies of Benito et al. (2000), Cabañas et al. (1999) and Cabañas et al. (2000).


Lee, V. W. 1987 (Jul). *Influence of local soil and geological site conditions on pseudo relative velocity spectrum amplitudes of recorded strong motion accelerations*. Tech. rept. CE 87-06. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.


Lee, V. W., & Trifunac, M. D. 1995 (May). *Pseudo relative velocity spectra of strong earthquake ground motion in California*. Tech. rept. CE 95-04. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.


Trifunac, M. D., & Lee, V. W. 1979. *Dependence of pseudo relative velocity spectra of strong motion acceleration on depth of sedimentary deposits*. Tech. rept. 79-02. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.

Trifunac, M. D., & Lee, V. W. 1985. *Preliminary empirical model for scaling pseudo relative velocity spectra of strong earthquake acceleration in terms of magnitude, distance, site intensity and recording site condition*. Tech. rept. 85-04. Department of Civil Engineering, University of Southern California, Los Angeles, California, U.S.A.


